People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spadaro, Maria Chiara
Marche Polytechnic University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Abnormal copper coordination obtained by a TiO2 overlayer as the key to enhance photocatalytic hydrogen generationcitations
- 2024Abnormal copper coordination obtained by a TiO2 overlayer as the key to enhance photocatalytic hydrogen generationcitations
- 2024Abnormal Copper Coordination obtained by TiO2 overlayer as a key for enhanced photocatalytic hydrogen generationcitations
- 2024Unraveling Exchange Coupling in Ferrites Nano-heterostructurescitations
- 2023Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowirescitations
- 2023Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowirescitations
- 2023Tunable particle-agglomeration and magnetic coupling in bi-magnetic nanocompositescitations
- 2023Tunable particle-agglomeration and magnetic coupling in bi-magnetic nanocompositescitations
- 2023Unraveling Exchange Coupling in Ferrites Nano‐Heterostructurescitations
- 2023Direct operando visualization of metal support interactions induced by hydrogen spillover during CO2 hydrogenationcitations
- 2023Direct Operando Visualization of Metal Support Interactions Induced by Hydrogen Spillover During CO2 Hydrogenationcitations
- 2022Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with earth abundant nanostructured Co3O4citations
- 2022Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with earth abundant nanostructured Co3O4citations
- 2022Doubling the mobility of InAs/InGaAs selective area grown nanowirescitations
- 2022Surface functionalization of surfactant-free particles : a strategy to tailor the properties of nanocomposites for enhanced thermoelectric performancecitations
- 2022Sustainable oxygen evolution electrocatalysis in aqueous 1 M HSO with earth abundant nanostructured CoO
- 2022Defect engineering in solution-processed polycrystalline SnSe leads to high thermoelectric performancecitations
- 2022Defect engineering in solution-processed polycrystalline SnSe leads to high thermoelectric performancecitations
- 2022Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructures
- 2022Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructurescitations
- 2022Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructurescitations
- 2021Tailoring plasmonic resonances in Cu-Ag metal islands filmscitations
- 2021Tailoring plasmonic resonances in Cu-Ag metal islands filmscitations
- 2020Synergistic Computational-Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenationcitations
Places of action
Organizations | Location | People |
---|
article
Doubling the mobility of InAs/InGaAs selective area grown nanowires
Abstract
<p>Selective area growth (SAG) of nanowires and networks promise a route toward scalable electronics, photonics, and quantum devices based on III-V semiconductor materials. The potential of high-mobility SAG nanowires however is not yet fully realised, since interfacial roughness, misfit dislocations at the nanowire/substrate interface and nonuniform composition due to material intermixing all scatter electrons. Here, we explore SAG of highly lattice-mismatched InAs nanowires on insulating GaAs(001) substrates and address these key challenges. Atomically smooth nanowire/substrate interfaces are achieved with the use of atomic hydrogen (a-H) as an alternative to conventional thermal annealing for the native oxide removal. The problem of high lattice mismatch is addressed through an InxGa1-xAs buffer layer introduced between the InAs transport channel and the GaAs substrate. The Ga-In material intermixing observed in both the buffer layer and the channel is inhibited via careful tuning of the growth temperature. Performing scanning transmission electron microscopy and x-ray diffraction analysis along with low-temperature transport measurements we show that optimized In-rich buffer layers promote high-quality InAs transport channels with the field-effect electron mobility over 10 000 cm(2) V-1 s(-1). This is twice as high as for nonoptimized samples and among the highest reported for InAs selective area grown nanostructures.</p>