Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kluth, Elias

  • Google
  • 1
  • 11
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Molecular beam epitaxy of single-crystalline bixbyite (In<SUB>1<SUB>−x</SUB>Ga<SUB>x</SUB> ) 2</SUB>O<SUB>3</SUB> films (x ≤0.18 ): Structural properties and consequences of compositional inhomogeneity8citations

Places of action

Chart of shared publication
Schewski, Robert
1 / 3 shared
Bierwagen, Oliver
1 / 9 shared
Nagata, Takahiro
1 / 4 shared
Feneberg, Martin
1 / 5 shared
Wouters, Charlotte
1 / 2 shared
Feldl, Johannes
1 / 5 shared
Lähnemann, Jonas
1 / 11 shared
Albrecht, Martin
1 / 15 shared
Papadogianni, Alexandra
1 / 2 shared
Goldhahn, Rüdiger
1 / 3 shared
Ramsteiner, Manfred
1 / 9 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Schewski, Robert
  • Bierwagen, Oliver
  • Nagata, Takahiro
  • Feneberg, Martin
  • Wouters, Charlotte
  • Feldl, Johannes
  • Lähnemann, Jonas
  • Albrecht, Martin
  • Papadogianni, Alexandra
  • Goldhahn, Rüdiger
  • Ramsteiner, Manfred
OrganizationsLocationPeople

article

Molecular beam epitaxy of single-crystalline bixbyite (In<SUB>1<SUB>−x</SUB>Ga<SUB>x</SUB> ) 2</SUB>O<SUB>3</SUB> films (x ≤0.18 ): Structural properties and consequences of compositional inhomogeneity

  • Schewski, Robert
  • Bierwagen, Oliver
  • Nagata, Takahiro
  • Kluth, Elias
  • Feneberg, Martin
  • Wouters, Charlotte
  • Feldl, Johannes
  • Lähnemann, Jonas
  • Albrecht, Martin
  • Papadogianni, Alexandra
  • Goldhahn, Rüdiger
  • Ramsteiner, Manfred
Abstract

We report the heteroepitaxial growth of single-crystalline bixbyite (In<SUB>1<SUB>−x</SUB>Ga<SUB>x</SUB>) 2</SUB>O<SUB>3</SUB> films on (111)-oriented yttria-stabilized zirconia substrates using plasma-assisted molecular beam epitaxy. A pure In<SUB>2</SUB>O<SUB>3</SUB> buffer layer between the substrate and (In<SUB>1<SUB>−x</SUB>Ga<SUB>x</SUB>) 2</SUB>O<SUB>3</SUB> alloy is shown to result in smoother film surfaces and significantly improved crystallinity. Transmission electron microscopy confirms the single crystallinity up to x =0.18 and only slight film quality deterioration with increasing Ga content. X-ray diffraction demonstrates partially relaxed layers with lattice parameters fitting well to Vegard's law. However, the Ga cations are not evenly distributed within the films containing nominally x &gt;0.11 : inclusions with high Ga density up to x =0.50 are observed within a "matrix" with x ≈0.08 . The cubic bixbyite phase is preserved in both the matrix and the inclusions, which is in contrast to previous work reporting secondary, Ga-rich monoclinic or hexagonal phases forming beyond the solubility limit (of x ≈0.10 ) of Ga in bixbyite In<SUB>2</SUB>O<SUB>3</SUB> . Moreover, for x ≥0.11 , both the Raman phonon lines and the optical absorption onset remain nearly constant. Hard x-ray photoelectron spectroscopy measurements also indicate a widening of the band gap and exhibit similar saturation of the Ga 2 p core level position for high Ga contents. This saturation behavior of the spectroscopic properties largely reflects the properties of the matrix of the film, while the results of x-ray diffraction are related only to the average (matrix and inclusions) film composition....

Topics
  • density
  • impedance spectroscopy
  • surface
  • inclusion
  • phase
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • transmission electron microscopy
  • forming
  • crystallinity