People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dzhigaev, Dmitry
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Spatially resolved structural and chemical properties of the white layer in machined Inconel 718 super alloycitations
- 2024Structural and chemical properties of anion exchanged CsPb(Br<sub>(1−x)</sub>Cl<sub> x </sub>)<sub>3</sub> heterostructured perovskite nanowires imaged by nanofocused x-rayscitations
- 2022In situ imaging of temperature-dependent fast and reversible nanoscale domain switching in a single-crystal perovskitecitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2020In Situ Imaging of Ferroelastic Domain Dynamics in CsPbBr3Perovskite Nanowires by Nanofocused Scanning X-ray Diffractioncitations
- 2020In situ imaging of ferroelastic domain dynamics in CsPbBr3perovskite nanowires by nanofocused scanning X-ray diffractioncitations
- 2019Coherent X-ray Imaging of CO-Adsorption-Induced Structural Changes in Pt Nanoparticles: Implications for Catalysiscitations
- 2015Nanofocused x-ray beams applied for mapping strain in core-shell nanowirescitations
- 2015Nanofocused x-ray beams applied for mapping strain in core-shell nanowirescitations
Places of action
Organizations | Location | People |
---|
article
Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopy
Abstract
Ferroelectric and ferroelastic domains have been predicted to enhance metal halide perovskite (MHP) solar cell performance. While the formation of such domains can be modified by temperature, pressure, or strain, established methods lack spatial control at the level of single domains. Here, we induce the formation of ferroelastic domains in CsPbBr3 nanowires at room temperature using an atomic force microscope (AFM) tip and visualize the domains using nanofocused x-ray diffraction with a 60 nm beam. Regions scanned with a low AFM tip force show orthorhombic 004 reflections along the nanowire axis, while regions exposed to higher forces exhibit 220 reflections. The applied stress locally changes the crystal structure, leading to lattice tilts that define ferroelastic domains, which spread spatially and terminate at {112}-type domain walls. The ability to induce individual ferroelastic domains within MHPs using AFM gives new possibilities for device design and fundamental experimental studies.<br />