People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wallentin, Jesper
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Structural and chemical properties of anion exchanged CsPb(Br<sub>(1−x)</sub>Cl<sub> x </sub>)<sub>3</sub> heterostructured perovskite nanowires imaged by nanofocused x-rayscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Ferroelectricity in Ultrathin HfO2-Based Films by Nanosecond Laser Annealingcitations
- 2023Beyond ray optics absorption of light in CsPbBr 3 perovskite nanowire arrays studied experimentally and with wave optics modellingcitations
- 2023Beyond ray optics absorption of light in CsPbBr3perovskite nanowire arrays studied experimentally and with wave optics modellingcitations
- 2022Perovskite-Compatible Electron-Beam-Lithography Process Based on Nonpolar Solvents for Single-Nanowire Devicescitations
- 2022Optical demonstration of crystallography and reciprocal space using laser diffraction from Au microdisc arrayscitations
- 2022In situ imaging of temperature-dependent fast and reversible nanoscale domain switching in a single-crystal perovskitecitations
- 2022Single-Crystalline Perovskite Nanowire Arrays for Stable X-ray Scintillators with Micrometer Spatial Resolutioncitations
- 2022Free-Standing Metal Halide Perovskite Nanowire Arrays with Blue-Green Heterostructurescitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2021Vertically Aligned CsPbBr3 Nanowire Arrays with Template-Induced Crystal Phase Transition and Stabilitycitations
- 2020In Situ Imaging of Ferroelastic Domain Dynamics in CsPbBr3Perovskite Nanowires by Nanofocused Scanning X-ray Diffractioncitations
- 2020In situ imaging of ferroelastic domain dynamics in CsPbBr3perovskite nanowires by nanofocused scanning X-ray diffractioncitations
- 2017Simulated sample heating from a nanofocused X-ray beamcitations
- 2015Simultaneous high-resolution scanning Bragg contrast and ptychographic imaging of a single solar cell nanowirecitations
- 2013Transparently Wrap-Gated Semiconductor Nanowire Arrays For Studies Of Gate-Controlled Photoluminescencecitations
- 2011Dynamics of extremely anisotropic etching of InP nanowires by HClcitations
- 2011Doping profile of InP nanowires directly imaged by photoemission electron microscopycitations
- 2010High Performance Single Nanowire Tunnel Diodes
Places of action
Organizations | Location | People |
---|
article
Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopy
Abstract
Ferroelectric and ferroelastic domains have been predicted to enhance metal halide perovskite (MHP) solar cell performance. While the formation of such domains can be modified by temperature, pressure, or strain, established methods lack spatial control at the level of single domains. Here, we induce the formation of ferroelastic domains in CsPbBr3 nanowires at room temperature using an atomic force microscope (AFM) tip and visualize the domains using nanofocused x-ray diffraction with a 60 nm beam. Regions scanned with a low AFM tip force show orthorhombic 004 reflections along the nanowire axis, while regions exposed to higher forces exhibit 220 reflections. The applied stress locally changes the crystal structure, leading to lattice tilts that define ferroelastic domains, which spread spatially and terminate at {112}-type domain walls. The ability to induce individual ferroelastic domains within MHPs using AFM gives new possibilities for device design and fundamental experimental studies.<br />