People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sørensen, Søren Strandskov
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Continuous structure modification of metal-organic framework glasses via halide salts
- 2024Thermal conductivity in modified sodium silicate glasses is governed by modal phase changescitations
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Alcohols as modifiers in metal−bis(acetamide) hybrid coordination network glasses
- 2024History matters for glass structure and mechanical properties
- 2023Role of Zn in aluminosilicate glasses used as supplementary cementitious materialscitations
- 2023Deciphering the hierarchical structure of phosphate glasses using persistent homology with optimized input radiicitations
- 2022Thermal conduction in a densified oxide glasscitations
- 2022Thermal conduction in a densified oxide glass:Insights from lattice dynamicscitations
- 2021Thermal conductivity of densified borosilicate glassescitations
- 2021Toughening of soda-lime-silica glass by nanoscale phase separation: Molecular dynamics studycitations
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2020Fracture toughness of a metal–organic framework glasscitations
- 2019Boron anomaly in the thermal conductivity of lithium borate glassescitations
- 2019Statistical Mechanical Approach to Predict the Structure Evolution in Borosilicate Glasses
- 2019Predicting Composition-Structure Relations in Alkali Borosilicate Glasses Using Statistical Mechanicscitations
Places of action
Organizations | Location | People |
---|
article
Toughening of soda-lime-silica glass by nanoscale phase separation: Molecular dynamics study
Abstract
The low fracture toughness of oxide glasses is a key limitation for many of their applications. Inducing and controlling nanoscale phase separation in oxide glasses has been proposed as a potential toughening strategy, as, unlike many alternative extrinsic toughening approaches, it allows one to retain the optical transparency. Using molecular dynamics simulations, we here investigate the toughening mechanism in soda-lime-silica glasses with embedded glassy nanoscale silica droplets. This system is chosen as a model for the experimental structure of phase-separated soda-lime-silica glass, which is attractive considering its existing commercial use and the ease of inducing phase separation. We calculate the fracture toughness of glass structures containing nanodroplets of varying sizes and with different precrack positions, revealing that the glassy silica droplets toughen the material. The simulations show that crack propagation is impeded by crack arrest, crack deflection and diversion, and stress field alteration, ultimately increasing the fracture toughness. Our findings thus shed light on the toughening mechanism due to phase separation, with important implications for the experimental design of oxide glasses with controlled nanoscale phase separation.