Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sobieszczyk, Pawel

  • Google
  • 1
  • 3
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Control of magnetic properties in ferrimagnetic GdFe and TbFe thin films by He+ and Ne+ irradiation20citations

Places of action

Chart of shared publication
Hintermayr, Julian
1 / 6 shared
Albrecht, Manfred
1 / 15 shared
Krupinski, Michal
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Hintermayr, Julian
  • Albrecht, Manfred
  • Krupinski, Michal
OrganizationsLocationPeople

article

Control of magnetic properties in ferrimagnetic GdFe and TbFe thin films by He+ and Ne+ irradiation

  • Hintermayr, Julian
  • Albrecht, Manfred
  • Krupinski, Michal
  • Sobieszczyk, Pawel
Abstract

<p>The impact of kiloelectronvolt He+ and kiloelectronvolt Ne+ ion irradiation on the magnetic properties of rare earth-3d transition metal amorphous alloys was investigated. The studies were performed for 20-nm-thick GdxFe100-x and TbxFe100-x films with perpendicular magnetic anisotropy, irradiated with doses ranging from 5×1013 to 5×1015ionspercm2. We demonstrate that this approach can be used to engineer magnetic properties such as magnetization, magnetic anisotropy, and compensation temperature in both alloys and to control the spin-flop reorientation transition in GdFe. We find that fine-tuning of the compensation point is possible without losing perpendicular magnetic anisotropy by appropriate selection of ion energy and irradiation dose. The experiments were supported by atomistic simulations revealing that the observed changes can be attributed to selective oxidation of rare earth atoms. Oxidation of 1% of atoms in the lattice gives reasonable agreement to the experimental results for low and medium ion doses.</p>

Topics
  • impedance spectroscopy
  • amorphous
  • experiment
  • thin film
  • simulation
  • magnetization