Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ciston, Jim

  • Google
  • 4
  • 34
  • 191

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Templated encapsulation of platinum-based catalysts promotes high-temperature stability to 1,100°C.100citations
  • 2021Prismatic 2.0 – Simulation software for scanning and high resolution transmission electron microscopy (STEM and HRTEM)73citations
  • 2021Phase-contrast imaging of multiply-scattering extended objects at atomic resolution by reconstruction of the scattering matrix15citations
  • 2020Origins of the transformability of nickel-titanium shape memory alloys3citations

Places of action

Chart of shared publication
Zhou, Chengshuang
1 / 2 shared
Yang, An-Chih
1 / 1 shared
Ercius, Peter
2 / 5 shared
Bare, Simon R.
1 / 5 shared
Stebbins, Jonathan F.
1 / 5 shared
Hoffman, Adam S.
1 / 4 shared
Goodman, Emmett D.
1 / 4 shared
Huber, Philipp
1 / 2 shared
Plessow, Philipp N.
1 / 3 shared
Lezama-Pacheco, Juan Salvador
1 / 1 shared
Stone, Michael L.
1 / 1 shared
Bustillo, Karen C.
1 / 4 shared
Aitbekova, Aisulu
1 / 2 shared
Brown, Hamish G.
2 / 2 shared
Ophus, Colin
3 / 11 shared
Pelz, Philipp
2 / 25 shared
Jones, Lewys
1 / 6 shared
Dacosta, Luis Rangel
1 / 1 shared
Mcbean, Patrick
1 / 1 shared
Scott, M. C.
2 / 12 shared
Rakowski, Alexander
1 / 6 shared
Odonovan, Peter
1 / 1 shared
Barber, Natolya
1 / 1 shared
Zettl, Alex
1 / 7 shared
Stonemeyer, Scott
1 / 2 shared
Findlay, Scott D.
1 / 2 shared
Zhang, Yaqian
1 / 1 shared
Song, Chengyu
1 / 1 shared
Chen, Xian
1 / 8 shared
Chumlyakov, Yuriy
1 / 2 shared
Gavini, Vikram
1 / 1 shared
Minor, Andrew M.
1 / 6 shared
Das, Sambit
1 / 1 shared
Song, Yintao
1 / 4 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Zhou, Chengshuang
  • Yang, An-Chih
  • Ercius, Peter
  • Bare, Simon R.
  • Stebbins, Jonathan F.
  • Hoffman, Adam S.
  • Goodman, Emmett D.
  • Huber, Philipp
  • Plessow, Philipp N.
  • Lezama-Pacheco, Juan Salvador
  • Stone, Michael L.
  • Bustillo, Karen C.
  • Aitbekova, Aisulu
  • Brown, Hamish G.
  • Ophus, Colin
  • Pelz, Philipp
  • Jones, Lewys
  • Dacosta, Luis Rangel
  • Mcbean, Patrick
  • Scott, M. C.
  • Rakowski, Alexander
  • Odonovan, Peter
  • Barber, Natolya
  • Zettl, Alex
  • Stonemeyer, Scott
  • Findlay, Scott D.
  • Zhang, Yaqian
  • Song, Chengyu
  • Chen, Xian
  • Chumlyakov, Yuriy
  • Gavini, Vikram
  • Minor, Andrew M.
  • Das, Sambit
  • Song, Yintao
OrganizationsLocationPeople

article

Origins of the transformability of nickel-titanium shape memory alloys

  • Song, Chengyu
  • Ophus, Colin
  • Chen, Xian
  • Chumlyakov, Yuriy
  • Gavini, Vikram
  • Minor, Andrew M.
  • Ciston, Jim
  • Das, Sambit
  • Song, Yintao
Abstract

<p>The near equiatomic NiTi alloy is the most successful shape memory alloy by a large margin. It is widely and increasingly used in biomedical devices. Yet, despite having a repeatable superelastic effect and excellent shape-memory, NiTi is very far from satisfying the conditions that characterize the most reversible phase-transforming materials. Thus, the scientific reasons underlying its vast success present an enigma. In this paper, we perform rigorous mathematical derivations and accurate density-functional theory calculations of transformation mechanisms to seek previously unrecognized twinlike defects that we term involution domains, and we observe them in real space in NiTi by aberration-corrected scanning transmission electron microscopy. Involution domains lead to an additional 216 compatible interfaces between phases in NiTi, and we theorize that this feature contributes importantly to its reliability. They are expected to arise in other transformations and to alter the conventional interpretation of the mechanism of the martensitic transformation.</p>

Topics
  • density
  • impedance spectroscopy
  • nickel
  • phase
  • theory
  • transmission electron microscopy
  • defect
  • titanium