Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kleiven, David

  • Google
  • 5
  • 7
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Thermodynamic investigation of phase transformation in Sn anode for magnesium batteries3citations
  • 2020Density functional simulations of pressurized Mg-Zn and Al-Zn alloys9citations
  • 2020Atomistic simulations of early stage clusters in AlMg alloys15citations
  • 2019Atomistic simulations of early stage clusters in Al–Mg alloys15citations
  • 2018Atomistic simulations of early stage clusters in AlMg alloys15citations

Places of action

Chart of shared publication
Garcia Lastra, Juan Maria
1 / 1 shared
Chang, Jin Hyun
1 / 7 shared
Vincent, Smobin
1 / 7 shared
Alidoust, Mohammad
1 / 7 shared
Akola, Jaakko
4 / 21 shared
Ødegård, Olve L.
3 / 3 shared
Laasonen, Kari
3 / 14 shared
Chart of publication period
2022
2020
2019
2018

Co-Authors (by relevance)

  • Garcia Lastra, Juan Maria
  • Chang, Jin Hyun
  • Vincent, Smobin
  • Alidoust, Mohammad
  • Akola, Jaakko
  • Ødegård, Olve L.
  • Laasonen, Kari
OrganizationsLocationPeople

article

Density functional simulations of pressurized Mg-Zn and Al-Zn alloys

  • Alidoust, Mohammad
  • Kleiven, David
  • Akola, Jaakko
Abstract

Binary Mg-Zn and Al-Zn alloys have been investigated theoretically under static isotropic pressure. The stable phases of these binaries on both initially hexagonal-close-packed (hcp) and face-centered-cubic (fcc) lattices have been determined by utilizing an iterative approach that uses a configurational cluster expansion method, Monte Carlo search algorithm, and density functional theory (DFT) calculations. Based on 64-atom models, it is shown that the most stable phases of the Mg-Zn binary alloy under ambient condition are MgZn3, Mg19Zn45, MgZn, and Mg34Zn30 for the hcp lattice, and MgZn3 and MgZn for the fcc lattice, whereas the Al-Zn binary is energetically unfavorable throughout the entire composition range for both the hcp and fcc lattice symmetries under all pressure conditions. By applying an isotropic pressure in the hcp lattice, Mg19Zn45 turns into an unstable phase at P≈10GPa, a new stable phase Mg3Zn appears at P≳20GPa, and Mg34Zn30 becomes unstable for P≳30GPa. For the fcc lattice, the Mg3Zn phase weakly touches the convex hull at P≳20GPa while the other stable phases remain intact up to ≈120GPa. Furthermore, making use of the obtained DFT results, the bulk modulus has been computed for several compositions up to pressure values on the order of ≈120GPa. The findings suggest that one can switch between Mg-rich and Zn-rich early-stage clusters simply by applying external pressure. Zn-rich alloys and precipitates are more favorable in terms of stiffness and stability against external deformation. ; Peer reviewed

Topics
  • density
  • impedance spectroscopy
  • cluster
  • phase
  • theory
  • simulation
  • precipitate
  • density functional theory
  • isotropic
  • bulk modulus
  • cluster expansion