People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johra, Hicham
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Anomaly in the relation between thermal conductivity and crystallinity of silicate glass-ceramicscitations
- 2022Thermal conduction in a densified oxide glasscitations
- 2022Thermal conduction in a densified oxide glass:Insights from lattice dynamicscitations
- 2021Thermal conductivity of densified borosilicate glassescitations
- 2021Thermal, moisture and mechanical properties of Seacrete:A sustainable sea-grown building materialcitations
- 2021Thermal, moisture and mechanical properties of Seacretecitations
- 2020Principles of Energy Flexible Buildings
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2019Boron anomaly in the thermal conductivity of lithium borate glassescitations
- 2017Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glasscitations
- 2016Influence of foaming agents on both the structure and the thermal conductivity of silicate glasses
Places of action
Organizations | Location | People |
---|
article
Boron anomaly in the thermal conductivity of lithium borate glasses
Abstract
Despite the importance of thermal conductivity for a range of modern glass applications, its compositional dependence and structural origins in modified oxide glasses remain poorly understood. In particular, the thermal conductivity of oxide glasses with network formers other than silica remain almost unexplored and no thorough connection with structural characteristics of glasses has been made. In this work, we study the thermal conductivity of binary lithium borate glasses using both experiments and classical molecular dynamics (MD) simulations. This glass system is chosen due to the nonmonotonic evolution in the boron coordination number as a function of composition and because glasses may be made in a wide compositional window. Specifically, we show that thermal conductivity exhibits a clear boron anomaly effect, as observed in both experiments and MD simulations. Thermal conduction is thus believed to mainly be promoted by the presence of fourfold coordinated boron. However, simulated vibrational density of states for the studied series suggests that the thermal conductivity is also influenced by the presence of the modifier ions based on an observed overlap between Li and O modes. Overall these results provide insights into the connection between thermal conductivity and structure of modified oxide glasses, which is the first step toward developing a model for predicting the composition dependence of thermal conductivity.