Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sørensen, Søren Strandskov

  • Google
  • 18
  • 42
  • 226

Aalborg University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2024Continuous structure modification of metal-organic framework glasses via halide saltscitations
  • 2024Thermal conductivity in modified sodium silicate glasses is governed by modal phase changes2citations
  • 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modellingcitations
  • 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modellingcitations
  • 2024Alcohols as modifiers in metal−bis(acetamide) hybrid coordination network glassescitations
  • 2024History matters for glass structure and mechanical propertiescitations
  • 2023Role of Zn in aluminosilicate glasses used as supplementary cementitious materials3citations
  • 2023Deciphering the hierarchical structure of phosphate glasses using persistent homology with optimized input radii3citations
  • 2022Thermal conduction in a densified oxide glass3citations
  • 2022Thermal conduction in a densified oxide glass:Insights from lattice dynamics3citations
  • 2021Thermal conductivity of densified borosilicate glasses14citations
  • 2021Toughening of soda-lime-silica glass by nanoscale phase separation: Molecular dynamics study14citations
  • 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigidity16citations
  • 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigidity16citations
  • 2020Fracture toughness of a metal–organic framework glass105citations
  • 2019Boron anomaly in the thermal conductivity of lithium borate glasses32citations
  • 2019Statistical Mechanical Approach to Predict the Structure Evolution in Borosilicate Glassescitations
  • 2019Predicting Composition-Structure Relations in Alkali Borosilicate Glasses Using Statistical Mechanics15citations

Places of action

Chart of shared publication
Smedskjær, Morten Mattrup
16 / 111 shared
Cao, Fengming
2 / 2 shared
Rasmussen, Philip
1 / 1 shared
Bockowski, Michal
6 / 22 shared
Micoulaut, Matthieu
2 / 6 shared
Shi, Ying
2 / 3 shared
Jensen, Kirsten M. Ø.
1 / 19 shared
Neuefeind, Jörg
2 / 5 shared
Ge, Xuan
2 / 2 shared
Juelsholt, Mikkel
2 / 10 shared
Jensen, Lars Rosgaard
6 / 37 shared
Kirsten, M. Ø. Jensen
1 / 1 shared
Yue, Yuanzheng
5 / 86 shared
Jalaludeen, Mohamed Faizal Ussama
1 / 1 shared
Mingione, Serena
1 / 2 shared
Montagnaro, Fabio
1 / 4 shared
Pedersen, Malene Thostrup
1 / 5 shared
Winnefeld, Frank
1 / 48 shared
Fajstrup, Lisbeth
1 / 2 shared
Du, Tao
1 / 6 shared
Chen, Zhimin
1 / 1 shared
Biscio, Christophe
1 / 3 shared
Xiao, Yongbao
1 / 1 shared
Bauchy, Mathieu
4 / 36 shared
Cielecki, Pawel Piotr
2 / 3 shared
Skovsen, Esben
2 / 2 shared
Johra, Hicham
6 / 12 shared
Bødker, Mikkel Sandfeld
3 / 13 shared
Mauro, John C.
3 / 47 shared
Logunov, Stephan L.
1 / 1 shared
Youngman, Randall E.
1 / 28 shared
Rzoska, Sylwester J.
1 / 10 shared
Christensen, Johan Frederik Schou
1 / 1 shared
To, Theany
2 / 13 shared
Paulsen, Frederikke Kildeberg
2 / 2 shared
Pedersen, Elsebeth Juhl
1 / 1 shared
Christensen, Sofia
2 / 2 shared
Laursen, Jonas Lindholm
2 / 2 shared
Adamsen, Ida Hammer
2 / 2 shared
Juhl Pedersen, Elsebeth
1 / 1 shared
Stepniewska, Malwina
1 / 4 shared
Qiao, Ang
1 / 4 shared
Chart of publication period
2024
2023
2022
2021
2020
2019

Co-Authors (by relevance)

  • Smedskjær, Morten Mattrup
  • Cao, Fengming
  • Rasmussen, Philip
  • Bockowski, Michal
  • Micoulaut, Matthieu
  • Shi, Ying
  • Jensen, Kirsten M. Ø.
  • Neuefeind, Jörg
  • Ge, Xuan
  • Juelsholt, Mikkel
  • Jensen, Lars Rosgaard
  • Kirsten, M. Ø. Jensen
  • Yue, Yuanzheng
  • Jalaludeen, Mohamed Faizal Ussama
  • Mingione, Serena
  • Montagnaro, Fabio
  • Pedersen, Malene Thostrup
  • Winnefeld, Frank
  • Fajstrup, Lisbeth
  • Du, Tao
  • Chen, Zhimin
  • Biscio, Christophe
  • Xiao, Yongbao
  • Bauchy, Mathieu
  • Cielecki, Pawel Piotr
  • Skovsen, Esben
  • Johra, Hicham
  • Bødker, Mikkel Sandfeld
  • Mauro, John C.
  • Logunov, Stephan L.
  • Youngman, Randall E.
  • Rzoska, Sylwester J.
  • Christensen, Johan Frederik Schou
  • To, Theany
  • Paulsen, Frederikke Kildeberg
  • Pedersen, Elsebeth Juhl
  • Christensen, Sofia
  • Laursen, Jonas Lindholm
  • Adamsen, Ida Hammer
  • Juhl Pedersen, Elsebeth
  • Stepniewska, Malwina
  • Qiao, Ang
OrganizationsLocationPeople

article

Boron anomaly in the thermal conductivity of lithium borate glasses

  • Mauro, John C.
  • Smedskjær, Morten Mattrup
  • Sørensen, Søren Strandskov
  • Johra, Hicham
  • Bauchy, Mathieu
Abstract

Despite the importance of thermal conductivity for a range of modern glass applications, its compositional dependence and structural origins in modified oxide glasses remain poorly understood. In particular, the thermal conductivity of oxide glasses with network formers other than silica remain almost unexplored and no thorough connection with structural characteristics of glasses has been made. In this work, we study the thermal conductivity of binary lithium borate glasses using both experiments and classical molecular dynamics (MD) simulations. This glass system is chosen due to the nonmonotonic evolution in the boron coordination number as a function of composition and because glasses may be made in a wide compositional window. Specifically, we show that thermal conductivity exhibits a clear boron anomaly effect, as observed in both experiments and MD simulations. Thermal conduction is thus believed to mainly be promoted by the presence of fourfold coordinated boron. However, simulated vibrational density of states for the studied series suggests that the thermal conductivity is also influenced by the presence of the modifier ions based on an observed overlap between Li and O modes. Overall these results provide insights into the connection between thermal conductivity and structure of modified oxide glasses, which is the first step toward developing a model for predicting the composition dependence of thermal conductivity.

Topics
  • density
  • impedance spectroscopy
  • experiment
  • simulation
  • glass
  • glass
  • molecular dynamics
  • Boron
  • Lithium
  • thermal conductivity