Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zaretsky, Eugene

  • Google
  • 1
  • 2
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Abnormal response of Ti3Si C2 to high strain-rate loading8citations

Places of action

Chart of shared publication
Kalabukhov, Sergey
1 / 14 shared
Barsoum, Michel W.
1 / 16 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Kalabukhov, Sergey
  • Barsoum, Michel W.
OrganizationsLocationPeople

article

Abnormal response of Ti3Si C2 to high strain-rate loading

  • Kalabukhov, Sergey
  • Barsoum, Michel W.
  • Zaretsky, Eugene
Abstract

<p>Herein, we report on the response of the MAX phase, Ti3SiC2, to shock wave compression at strain rates above 104s-1. The shock response was determined by measuring the rear, free surface, and velocity of samples - subjected to impact by high-velocity projectiles launched by a gas-gun - using interferometry. The effects of temperature and sample thickness on the dynamic yield and dynamic tensile (spall) strengths were studied. The most important result of this work is the unique dual nature, at high strain rates, of the response of Ti3SiC2, in that it is reminiscent of both metals and ceramics. For low-energy impacts, the elastic response is reminiscent of ductile metals. However, for high-energy impacts, it performed like a hard ceramic with quite high work hardening rates. In other words, Ti3SiC2 behaves like nothing before it and thus must reflect its nanolayered structure. This work not only provides results on the dynamic mechanical properties of Ti3SiC2, but is a critical first step toward understanding the response of ripplocations in layered solids to high strain rates.</p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • strength
  • layered
  • ceramic
  • interferometry