People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fytas, George
Max Planck Institute for Polymer Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Size-dependent nanoscale soldering of polystyrene colloidal crystals by supercritical fluidscitations
- 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocompositescitations
- 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocompositescitations
- 2021Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solutioncitations
- 2021Optomechanic Coupling in Ag Polymer Nanocomposite Filmscitations
- 2021Direct visualization and characterization of interfacially adsorbed polymer atop nanoparticles and within nanocompositescitations
- 2020Harnessing polymer grafting to control the shape of plasmonic nanoparticlescitations
- 2020Ultrathin polydopamine films with phospholipid nanodiscs containing a glycophorin a domaincitations
- 2020Frequency-domain study of nonthermal gigahertz phonons reveals Fano coupling to charge carrierscitations
- 2020Ultrathin Polydopamine Films with Phospholipid Nanodiscs Containing a Glycophorin A Domaincitations
- 2018Propagation of elastic waves in a one-dimensional high aspect ratio nanoridge phononic crystal phononic crystalcitations
- 2018Robustness of elastic properties in polymer nanocomposite films examined over the full volume fraction rangecitations
- 2018Well-defined metal-polymer nanocomposites: The interplay of structure, thermoplasmonics, and elastic mechanical propertiescitations
- 2018Direct observation of polymer surface mobility via nanoparticle vibrationscitations
- 2018Propagation of Elastic Waves in a One-Dimensional High Aspect Ratio Nanoridge Phononic Crystalcitations
- 2018Well-defined metal-polymer nanocomposites : the interplay of structure, thermoplasmonics, and elastic mechanical propertiescitations
- 2018Ultrathin Shell Layers Dramatically Influence Polymer Nanoparticle Surface Mobilitycitations
- 2014Surface asymmetry of coated spherical nanoparticlescitations
- 2011Resonance enhanced dynamic light scatteringcitations
Places of action
Organizations | Location | People |
---|
article
Well-defined metal-polymer nanocomposites: The interplay of structure, thermoplasmonics, and elastic mechanical properties
Abstract
<p>Metal-polymer nanocomposites are hybrid materials combining the superior plasmonic, electrical, and thermal properties of metals with the good elasticity and manufacturability of polymers. This renders metal-polymer nanocomposites promising candidates for conductive filler and coating applications, where mechanical properties are optothermally coupled. Here, we study the interplay of nanostructure, thermoplasmonics, and elastic mechanical properties of silver-polystyrene nanocomposites (AgPS) by transmission electron microscopy, small-angle x-ray scattering, Brillouin light scattering (BLS), and other supplemental techniques. We utilize the well-known particle-brush architecture to ensure a homogeneous and isotropic nanoparticle distribution throughout the hybrid material. The effective longitudinal modulus of the as-prepared samples is found to decrease from 5.7 to 4.8 GPa with increasing Ag content from 0 to 4.4 vol.%. Temperature-dependent BLS measurements reveal the unique contribution of local thermoplasmonic heating that depends on the Ag nanoparticle composition. This thermoplasmonic effect results in a lower apparent glass transition temperature (Tg) and a stronger laser power dependence of the speed of sound. Exceeding moderate thermal annealing temperatures (>150âC) leads to a strong structural rearrangement within the homogeneous nanocomposite material with a peculiar clustering-redispersion effect, which also translates into altered mechanical properties. The annealing-induced Ag nanoparticle aggregation results in an even stronger thermoplasmonic effect. We validate our experimental findings with complementary thermographic measurements and finite-element modeling. Overall, this work demonstrates the combined effects of composition and (reversible) aggregation on the mechanical and thermoplasmonic properties of metal-polymer nanocomposites. It not only deepens our understanding of the interaction between light, temperature, and mechanical properties in metal-polymer nanocomposites but also provides a guide for customizing AgPS nanocomposites for potential applications.</p>