Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhou, Songsong

  • Google
  • 3
  • 18
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019The MoSeS dynamic omnigami paradigm for smart shape and composition programmable 2D materials18citations
  • 2018Domain morphology and mechanics of the H/T ' transition metal dichalcogenide monolayers23citations
  • 2017Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures50citations

Places of action

Chart of shared publication
Park, Jiwoong
1 / 4 shared
Srolovitz, David
3 / 65 shared
Berry, Joel
3 / 3 shared
Ristic, Simeon
1 / 1 shared
Haataja, Mikko P.
1 / 1 shared
Kehayias, Christopher E.
1 / 1 shared
Zhao, Meng-Qiang
1 / 1 shared
Naylor, Carl H.
1 / 4 shared
Rappe, Andrew M.
1 / 11 shared
Gona, Ram S.
1 / 1 shared
Gao, Zhaoli
1 / 1 shared
Parkin, William M.
1 / 1 shared
Mcclimon, John Brandon
1 / 1 shared
Carpick, Robert W.
1 / 2 shared
Drndic, Marija
1 / 1 shared
Tan, Liang Z.
1 / 5 shared
Johnson, Alan T. Charlie
1 / 1 shared
Zhang, Qicheng
1 / 5 shared
Chart of publication period
2019
2018
2017

Co-Authors (by relevance)

  • Park, Jiwoong
  • Srolovitz, David
  • Berry, Joel
  • Ristic, Simeon
  • Haataja, Mikko P.
  • Kehayias, Christopher E.
  • Zhao, Meng-Qiang
  • Naylor, Carl H.
  • Rappe, Andrew M.
  • Gona, Ram S.
  • Gao, Zhaoli
  • Parkin, William M.
  • Mcclimon, John Brandon
  • Carpick, Robert W.
  • Drndic, Marija
  • Tan, Liang Z.
  • Johnson, Alan T. Charlie
  • Zhang, Qicheng
OrganizationsLocationPeople

article

Domain morphology and mechanics of the H/T ' transition metal dichalcogenide monolayers

  • Haataja, Mikko P.
  • Srolovitz, David
  • Berry, Joel
  • Zhou, Songsong
Abstract

The properties of two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers can be dynamically controlled via strain-induced displacive structural transformations between semiconducting (H) and metallic or semimetallic (T') crystal structures. The shapes, symmetries, and kinetics of crystalline domains generated during these transformations and the mechanical response of transforming monolayers are of fundamental and applied interest in, e.g., phase change memory devices and the study of topologically protected edge states in quantum spin Hall insulating T' crystals. We quantitatively characterize T' domain morphologies during H→T' transformations in both flat and bendable TMD monolayers using a combination of first principles and continuum calculations. Wulff constructions for MoTe<sub>2</sub> and MoS<sub>2</sub> show that T' domains within much larger T' domains are either rhombi of fixed proportions (if nonmisfitting) or rectangles whose aspect ratio A(R) increases with domain size<i> L</i><sub>0</sub> (if misfitting). Isolated T' domains within much larger H domains undergo a morphological crossover from compact to elongated shapes at<i> L</i><sub>0</sub> ≈100-200 nm if the sheet is constrained to be flat or <i>L</i><sub>0</sub> ≥ 2 <i>μ</i>m if the sheet is free to bend. This crossover is driven by a competition between anisotropic interfacial energy and elastic misfit energy, and its position can be tuned via the monolayer-substrate interaction strength. It is shown that the aspect ratio <i>A</i><sub><i>R</i></sub> obeys a scaling law <i>A<sub>R</sub></i> ∼ <i>L<sub>0 </sub></i><sup>2/3</sup>. Stress-strain response characterized as a function of strain orientation reveals extreme anisotropy in the effective elastic modulus through H/T' coexistence. Ferroelastic multidomain T'-WTe<sub>2</sub> monolayers are found to exhibit two to three regimes of reversible mechanical response, and localized buckling in freely suspended T' monolayers is shown to qualitatively alter T' domain symmetries.

Topics
  • impedance spectroscopy
  • phase
  • strength
  • anisotropic
  • two-dimensional
  • interfacial
  • interfacial energy