Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ferrando-Villalba, Pablo

  • Google
  • 6
  • 27
  • 71

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2019Growth Monitoring with Submonolayer Sensitivity Via Real-Time Thermal-Conductance Measurements1citations
  • 2019Measuring device and material ZT in a thin-film Si-based thermoelectric microgenerator11citations
  • 2019Measuring Device and Material ZT in a Thin-Film Si-Based Thermoelectric Microgenerator11citations
  • 2018Impact of pore anisotropy on the thermal conductivity of porous Si nanowirescitations
  • 2018Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules24citations
  • 2018Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules24citations

Places of action

Chart of shared publication
Rã Fols-Ribã, Joan
1 / 1 shared
Lopeandãa Fernãndez, Aitor
3 / 7 shared
Takegami, Daisuke
1 / 2 shared
Rodrãguez-Viejo, Javier
2 / 7 shared
Garcãa, Gemma
2 / 4 shared
Abad, Llibertat
5 / 6 shared
Pãrez-Marãn, Antonio Pablo
1 / 1 shared
Gonãalves Dalkiranis Pereira, Gustavo
1 / 1 shared
Rurali, Riccardo
1 / 12 shared
Gambacorti, N.
1 / 2 shared
Dortenzi, L.
1 / 4 shared
Boarino, L.
1 / 10 shared
Cartoixã Soler, Xavier
1 / 3 shared
Dalkiranis Pereira, Gustavo Gonãalves
1 / 1 shared
De Leo, N.
1 / 1 shared
Jacob, M.
1 / 3 shared
Cara, Eleonora
1 / 4 shared
Saghi, Zineb
1 / 9 shared
Rafols-Ribe, Joan
1 / 1 shared
Colombo, Luciano
2 / 14 shared
Rodriguez-Viejo, Javier
2 / 8 shared
Dettori, Riccardo
2 / 2 shared
Gonzalez-Silveira, Marta
1 / 4 shared
Lopeandia, Aitor F.
1 / 1 shared
Ràfols-Ribé, Joan
1 / 1 shared
Silveira, Marta Gonzalez
1 / 9 shared
Lopeandia, Aitor
1 / 3 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Rã Fols-Ribã, Joan
  • Lopeandãa Fernãndez, Aitor
  • Takegami, Daisuke
  • Rodrãguez-Viejo, Javier
  • Garcãa, Gemma
  • Abad, Llibertat
  • Pãrez-Marãn, Antonio Pablo
  • Gonãalves Dalkiranis Pereira, Gustavo
  • Rurali, Riccardo
  • Gambacorti, N.
  • Dortenzi, L.
  • Boarino, L.
  • Cartoixã Soler, Xavier
  • Dalkiranis Pereira, Gustavo Gonãalves
  • De Leo, N.
  • Jacob, M.
  • Cara, Eleonora
  • Saghi, Zineb
  • Rafols-Ribe, Joan
  • Colombo, Luciano
  • Rodriguez-Viejo, Javier
  • Dettori, Riccardo
  • Gonzalez-Silveira, Marta
  • Lopeandia, Aitor F.
  • Ràfols-Ribé, Joan
  • Silveira, Marta Gonzalez
  • Lopeandia, Aitor
OrganizationsLocationPeople

article

Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules

  • Colombo, Luciano
  • Ràfols-Ribé, Joan
  • Rodriguez-Viejo, Javier
  • Dettori, Riccardo
  • Ferrando-Villalba, Pablo
  • Silveira, Marta Gonzalez
  • Lopeandia, Aitor
  • Abad, Llibertat
Abstract

<p>Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.</p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • simulation
  • glass
  • semiconductor
  • glass
  • molecular dynamics
  • strength
  • anisotropic
  • glass transition temperature
  • thermal conductivity