People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roux, Xavier Le
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Controlling the Modal Confinement in Silicon Nanophotonic Waveguides through Dual‐Metamaterial Engineeringcitations
- 202040 Gbps heterostructure germanium avalanche photo receiver on a silicon chipcitations
- 2020Third Order Nonlinear Optical Susceptibility of Crystalline Oxide Yttria-Stabilized Zirconiacitations
- 2020Silicon-germanium receivers for short-waveinfrared optoelectronics and communications High-speed silicon-germanium receivers (invited review)citations
- 2019Nonlinear third order silicon photonics enabled by dispersion and subwavelength engineeringcitations
- 2018High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applicationscitations
- 2017Functional oxides on Silicon and Sapphire substrates for photonic applications
- 2016Functional oxides on Silicon and Sapphire substrates for photonic applications
- 2016Oxides on Silicon and Sapphire substrates for photonic applications
Places of action
Organizations | Location | People |
---|
article
High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications
Abstract
Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (∼2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10 −3 • range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.