Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aktas, O.

  • Google
  • 4
  • 16
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Control of surface potential at polar domain walls in a nonpolar oxide26citations
  • 2015Elastic softening of leucite and the lack of polar domain boundariescitations
  • 2015Effect of pores and grain size on the elastic and piezoelectric properties of quartz-based materials14citations
  • 2013First-order ferroelastic transition in a magnetoelectric multiferroic: CuCrO217citations

Places of action

Chart of shared publication
Tortech, L.
1 / 4 shared
Barrett, N.
1 / 13 shared
Mathieu, C.
1 / 7 shared
Kreisel, J.
1 / 13 shared
Haumont, R.
1 / 7 shared
Martinotti, D.
1 / 2 shared
Nataf, G.
1 / 2 shared
Guennou, Mael
1 / 17 shared
Salje, E. K. H., K. H.
1 / 1 shared
Hicher, Pierre-Yves
1 / 3 shared
Carpenter, Ma
2 / 16 shared
Salje, Ekh
2 / 5 shared
Aufort, J.
1 / 1 shared
Otani, T.
1 / 1 shared
Kimura, T.
1 / 6 shared
Quirion, G.
1 / 1 shared
Chart of publication period
2017
2015
2013

Co-Authors (by relevance)

  • Tortech, L.
  • Barrett, N.
  • Mathieu, C.
  • Kreisel, J.
  • Haumont, R.
  • Martinotti, D.
  • Nataf, G.
  • Guennou, Mael
  • Salje, E. K. H., K. H.
  • Hicher, Pierre-Yves
  • Carpenter, Ma
  • Salje, Ekh
  • Aufort, J.
  • Otani, T.
  • Kimura, T.
  • Quirion, G.
OrganizationsLocationPeople

article

Control of surface potential at polar domain walls in a nonpolar oxide

  • Tortech, L.
  • Barrett, N.
  • Mathieu, C.
  • Kreisel, J.
  • Haumont, R.
  • Martinotti, D.
  • Nataf, G.
  • Guennou, Mael
  • Aktas, O.
  • Salje, E. K. H., K. H.
  • Hicher, Pierre-Yves
Abstract

International audience ; Ferroic domain walls could play an important role in microelectronics, given their nanometric size and often distinct functional properties. Until now, devices and device concepts were mostly based on mobile domain walls in ferromagnetic and ferroelectric materials. A less explored path is to make use of polar domain walls in nonpolar ferroelastic materials. Indeed, while the polar character of ferroelastic domain walls has been demonstrated, polarization control has been elusive. Here, we report evidence for the electrostatic signature of the domain-wall polarization in nonpolar calcium titanate (CaTiO 3). Macroscopic mechanical resonances excited by an ac electric field are observed as a signature of a piezoelectric response caused by polar walls. On the microscopic scale, the polarization in domain walls modifies the local surface potential of the sample. Through imaging of surface potential variations, we show that the potential at the domain wall can be controlled by electron injection. This could enable devices based on nondestructive information readout of surface potential.

Topics
  • impedance spectroscopy
  • surface
  • laser emission spectroscopy
  • Calcium