People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Auradou, Harold
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2016Large scale flow visualization and anemometry applied to lab-on-a-chip models of porous mediacitations
- 2015Complex behavior of a yield stress fluid in model porous media
- 2015Effect of the porosity on the fracture surface roughness of sintered materials: From anisotropic to isotropic self-affine scalingcitations
- 2011Viscometer using drag force measurementscitations
- 2006Low self-affine exponents of fracture surfaces of glass ceramicscitations
Places of action
Organizations | Location | People |
---|
article
Low self-affine exponents of fracture surfaces of glass ceramics
Abstract
The geometry of post mortem rough fracture surfaces of porous glass ceramics made of sintered glass beads is shown experimentally to be self-affine with an exponent zeta=0.40 (0.04) remarkably lower than the 'universal' value zeta=0.8 frequently measured for many materials. This low value of zeta is similar to that found for sandstone samples of similar micro structure and is also practically independent on the porosity phi in the range investigated (3% < phi < 26%) as well as on the bead diameter d and of the crack growth velocity. In contrast, the roughness amplitude normalized by d increases linearly with phi while it is still independent, within experimental error, of d and of the crack propagation velocity. An interpretation of this variation is suggested in terms of a transition from transgranular to intergranular fracture propagation with no influence, however, on the exponent zeta.