People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Albert, Samuel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Searching for the Gardner transition glassy glycerol
Abstract
We search for a Gardner transition in glassy glycerol, a standard molecular glass, measuring the third harmonics cubic susceptibility $^{(3)}$ from slightly below the usual glass transition temperature down to $10K$. According to the mean field picture, if local motion within the glass were becoming highly correlated due to the emergence of a Gardner phase then $^{(3)}$, which is analogous to the dynamical spin-glass susceptibility, should increase and diverge at the Gardner transition temperature $T_G$. We find instead that upon cooling $| ^{(3)} |$ decreases by several orders of magnitude and becomes roughly constant in the regime $100K-10K$. We rationalize our findings by assuming that the low temperature physics is described by localized excitations weakly interacting via a spin-glass dipolar pairwise interaction in a random magnetic field. Our quantitative estimations show that the spin-glass interaction is twenty to fifty times smaller than the local random field contribution, thus rationalizing the absence of the spin-glass Gardner phase. This hints at the fact that a Gardner phase may be suppressed in standard molecular glasses, but it also suggests ways to favor its existence in other amorphous solids and by changing the preparation protocol.