People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Voigt, Axel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Controlling magnetic anisotropy in amplitude expansion of phase field crystal model
- 2021Doubly degenerate diffuse interface models of anisotropic surface diffusioncitations
- 2021Doubly degenerate diffuse interface models of surface diffusioncitations
- 2020Hyperuniform monocrystalline structures by spinodal solid-state dewettingcitations
- 2020Self-assembly of nanovoids in Si microcrystals epitaxially grown on deeply patterned substratescitations
- 2020Hyperuniform Monocrystalline Structures by Spinodal Solid-State Dewettingcitations
- 2019CONVEXITY SPLITTING IN A PHASE FIELD MODEL FOR SURFACE DIFFUSION
- 2019Deterministic 3D self-assembly of Si through a rim-less and topology-preserving dewetting regime
- 2019Closing the gap between atomic-scale lattice deformations and continuum elasticitycitations
- 2019Deterministic three-dimensional self-assembly of Si through a rimless and topology-preserving dewetting regimecitations
- 2018Morphological evolution of Ge/Si nano-strips driven by Rayleigh-like instabilitycitations
- 2017Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal modelcitations
- 2017Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitecturescitations
- 2017Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended filmcitations
- 2016Thin-film growth dynamics with shadowing effects by a phase-field approachcitations
- 2016Deformation analysis of polymer foams under compression load using in situ computed tomography and finite element simulation methods
- 2015Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Sicitations
- 2015Faceting of equilibrium and metastable nanostructures: a Phase-Field model of surface diffusion tackling realistic shapescitations
- 2004Finite element method for epitaxial growth with attachment–detachment kineticscitations
- 2003Element method for epitaxial growth with attachment-detachment kinetics
Places of action
Organizations | Location | People |
---|
article
Hyperuniform Monocrystalline Structures by Spinodal Solid-State Dewetting
Abstract
<p>Materials featuring anomalous suppression of density fluctuations over large length scales are emerging systems known as disordered hyperuniform. The underlying hidden order renders them appealing for several applications, such as light management and topologically protected electronic states. These applications require scalable fabrication, which is hard to achieve with available top-down approaches. Theoretically, it is known that spinodal decomposition can lead to disordered hyperuniform architectures. Spontaneous formation of stable patterns could thus be a viable path for the bottom-up fabrication of these materials. Here, we show that monocrystalline semiconductor-based structures, in particular Si i ,Ge, layers deposited on silicon-on-insulator substrates, can undergo spinodal solid-state dewetting featuring correlated disorder with an effective hyperuniform character. Nano- to micrometric sized structures targeting specific morphologies and hyperuniform character can be obtained, proving the generality of the approach and paving the way for technological applications of disordered hyperuniform metamaterials. Phase-field simulations explain the underlying nonlinear dynamics and the physical origin of the emerging patterns.</p>