People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Sanjeev
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Automated Porosity Characterization for Aluminum Die Casting Materials Using X-ray Radiography, Synthetic X-ray Data Augmentation by Simulation, and Machine Learningcitations
- 2023Lessons learnt in the first year of an Australian pediatric cardio oncology cliniccitations
- 2023Excitation-wavelength-dependent photoluminescence/electrical conductivity of copper oxide nanorodscitations
- 2023Investigation on mechanical properties of novel natural fiber-epoxy resin hybrid composites for engineering structural applicationscitations
- 2023Study on Magnetron Sputtered Nb‐Doped ZnO Thin Films switching properties for RRAM Applicationscitations
- 2023Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devicescitations
- 2023Performance of Pozzolan-Based Reactive Magnesia Cement Mixes against Sulphate Attackcitations
- 2023Development of Graphitic 2024 Al Alloy by Mechanical Alloying
- 2023Impregnation of Modified Magnetic Nanoparticles on Low-Cost Agro-Waste-Derived Biochar for Enhanced Removal of Pharmaceutically Active Compounds: Performance Evaluation and Optimization Using Response Surface Methodologycitations
- 2022Investigation on Mechanical Durability Properties of High-Performance Concrete with Nanosilica and Copper Slagcitations
- 2022Investigation on Mechanical Durability Properties of High-Performance Concrete with Nanosilica and Copper Slagcitations
- 2022Mechanical and Durability Studies on Ficus exasperata Leaf Ash Concrete
- 2022Effect of Nano Ground Granulated Blast Furnace Slag (GGBS) Volume % on Mechanical Behaviour of High-Performance Sustainable Concretecitations
- 2022Sputter Deposited Mn‐doped ZnO Thin Film for Resistive Memory Applicationscitations
- 2021Optimal use of temporary clip application during aneurysm surgery – In search of the holy grailcitations
- 2020The modified magnetodielectric response in KNN-CZFMO based particulate multiferroic composite systemcitations
- 2018Isothermal Transformation Behavior and Microstructural Evolution of Micro-Alloyed Steel
- 2018Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wirescitations
- 2016Abrasion resistance of sustainable green concrete containing waste tire rubber particlescitations
- 2014One-Step Synthesis of Superparamagnetic Fe3O4@PANI Nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wires
Abstract
<p>The existence of Wigner crystallization, one of the most significant hallmarks of strong electron correlations, has to date only been definitively observed in two-dimensional systems. In one-dimensional (1D) quantum wires Wigner crystals correspond to regularly spaced electrons; however, weakening the confinement and allowing the electrons to relax in a second dimension is predicted to lead to the formation of a new ground state constituting a zigzag chain with nontrivial spin phases and properties. Here we report the observation of such zigzag Wigner crystals by use of on-chip charge and spin detectors employing electron focusing to image the charge density distribution and probe their spin properties. This experiment demonstrates both the structural and spin phase diagrams of the 1D Wigner crystallization. The existence of zigzag spin chains and phases which can be electrically controlled in semiconductor systems may open avenues for experimental studies of Wigner crystals and their technological applications in spintronics and quantum information.</p>