People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Csányi, Gábor
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Structural Dynamics Descriptors for Metal Halide Perovskites.
- 2023Dynamic Local Structure in Caesium Lead Iodide: Spatial Correlation and Transient Domains.
- 2021Origins of structural and electronic transitions in disordered silicon.
- 2020An accurate and transferable machine learning potential for carbon.
- 2018Reactivity of Amorphous Carbon Surfaces: Rationalizing the Role of Structural Motifs in Functionalization Using Machine Learningcitations
- 2018Computational Surface Chemistry of Tetrahedral Amorphous Carbon by Combining Machine Learning and Density Functional Theorycitations
- 2018Growth Mechanism and Origin of High sp3 Content in Tetrahedral Amorphous Carboncitations
- 2018Growth Mechanism and Origin of High sp^{3} Content in Tetrahedral Amorphous Carbon.
- 2018Reactivity of Amorphous Carbon Surfacescitations
- 2018Reactivity of Amorphous Carbon Surfaces: Rationalizing the Role of Structural Motifs in Functionalization Using Machine Learning.
- 2017Polytypism in the ground state structure of the Lennard-Jonesium.
- 2017Polytypism in the ground state structure of the Lennard-Jonesiumcitations
- 2015Low Speed Crack Propagation via Kink Formation and Advance on the Silicon (110) Cleavage Planecitations
Places of action
Organizations | Location | People |
---|
article
Growth Mechanism and Origin of High sp3 Content in Tetrahedral Amorphous Carbon
Abstract
We study the deposition of tetrahedral amorphous carbon (ta-C) films from molecular dynamics simulations based on a machine-learned interatomic potential trained from density-functional theory data. For the first time, the high sp3 fractions in excess of 85% observed experimentally are reproduced by means of computational simulation, and the deposition energy dependence of the film's characteristics is also accurately described. High confidence in the potential and direct access to the atomic interactions allow us to infer the microscopic growth mechanism in this material. While the widespread view is that ta-C grows by "subplantation," we show that the so-called "peening" model is actually the dominant mechanism responsible for the high sp3 content. We show that pressure waves lead to bond rearrangement away from the impact site of the incident ion, and high sp3 fractions arise from a delicate balance of transitions between three- and fourfold coordinated carbon atoms. These results open the door for a microscopic understanding of carbon nanostructure formation with an unprecedented level of predictive power.