Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Habenicht, C.

  • Google
  • 2
  • 13
  • 95

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Nonlocal dielectric function and nested dark excitons in MoS2citations
  • 2016Jeff Description of the Honeycomb Mott Insulator α-RuCl395citations

Places of action

Chart of shared publication
Büchner, B.
1 / 41 shared
Klaproth, T.
1 / 1 shared
Koitzsch, A.
2 / 3 shared
Pawlik, A.-S.
1 / 1 shared
Schuster, R.
1 / 4 shared
Knupfer, M.
2 / 13 shared
Brink, J. Van Den
1 / 1 shared
Kandpal, H. C.
1 / 2 shared
Müller, E.
1 / 16 shared
Nowak, D.
1 / 2 shared
Doert, Thomas
1 / 41 shared
Büchner, Bernd
1 / 35 shared
Isaeva, A.
1 / 7 shared
Chart of publication period
2019
2016

Co-Authors (by relevance)

  • Büchner, B.
  • Klaproth, T.
  • Koitzsch, A.
  • Pawlik, A.-S.
  • Schuster, R.
  • Knupfer, M.
  • Brink, J. Van Den
  • Kandpal, H. C.
  • Müller, E.
  • Nowak, D.
  • Doert, Thomas
  • Büchner, Bernd
  • Isaeva, A.
OrganizationsLocationPeople

article

Jeff Description of the Honeycomb Mott Insulator α-RuCl3

  • Brink, J. Van Den
  • Kandpal, H. C.
  • Koitzsch, A.
  • Müller, E.
  • Nowak, D.
  • Doert, Thomas
  • Büchner, Bernd
  • Isaeva, A.
  • Habenicht, C.
  • Knupfer, M.
Abstract

Novel ground states might be realized in honeycomb lattices with strong spin-orbit coupling. Here we study the electronic structure of α−RuCl3, in which the Ru ions are in a d5 configuration and form a honeycomb lattice, by angle-resolved photoemission, x-ray photoemission, and electron energy loss spectroscopy supported by density functional theory and multiplet calculations. We find that α−RuCl3 is a Mott insulator with significant spin-orbit coupling, whose low energy electronic structure is naturally mapped onto Jeff states. This makes α−RuCl3 a promising candidate for the realization of Kitaev physics. Relevant electronic parameters such as the Hubbard energy U, the crystal field splitting 10 Dq, and the charge transfer energy Δ are evaluated.

Topics
  • density
  • impedance spectroscopy
  • theory
  • density functional theory
  • electron energy loss spectroscopy