People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wohlgenannt, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2014Intrinsic magnetic field effects in organic semiconductorscitations
- 2012Tuning the Performance of Organic Spintronic Devices Using X-Ray Generated Trapscitations
- 2011Spin in organics : a new route to spintronicscitations
- 2002Conjugation-length dependence of spin-dependent exciton formation rates in pi-conjugated oligomers and polymerscitations
Places of action
Organizations | Location | People |
---|
article
Tuning the Performance of Organic Spintronic Devices Using X-Ray Generated Traps
Abstract
X rays produced during electron-beam deposition of metallic electrodes drastically change the performance of organic spintronic devices. The x rays generate traps with an activation energy of ≈0.5 eV in a commonly used organic. These traps lead to a dramatic decrease in spin-diffusion length in organic spin valves. In organic magnetoresistive (OMAR) devices, however, the traps strongly enhance magnetoresistance. OMAR is an intrinsic magnetotransport phenomenon and does not rely on spin injection. We discuss our observations in the framework of currently existing theories.