Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Datchi, Frederic

  • Google
  • 1
  • 3
  • 95

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Structure of Polymeric Carbon Dioxide CO2-V95citations

Places of action

Chart of shared publication
Salamat, Ashkan
1 / 11 shared
Ninet, Sandra
1 / 3 shared
Mallick, Bidyut
1 / 2 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Salamat, Ashkan
  • Ninet, Sandra
  • Mallick, Bidyut
OrganizationsLocationPeople

article

Structure of Polymeric Carbon Dioxide CO2-V

  • Salamat, Ashkan
  • Ninet, Sandra
  • Mallick, Bidyut
  • Datchi, Frederic
Abstract

The structure of polymeric carbon dioxide (CO2-V) has been solved using synchrotron x-ray powder diffraction, and its evolution followed from 8 to 65 GPa.We compare the experimental results obtained for a 100% CO2 sample and a 1 mol% CO2=He sample. The latter allows us to produce the polymer in a pure form and study its compressibility under hydrostatic conditions. The high quality of the x-ray data enables us to solve the structure directly from experiments. The latter is isomorphic to the -cristobalite phase of SiO2 with the space group I 42d. Carbon and oxygen atoms are arranged in CO4 tetrahedral units linked by oxygen atoms at the corners. The bulk modulus determined under hydrostatic conditions, B0 ¼ 136ð10Þ GPa, is much smaller than previously reported. The comparison of our experimental findings with theoretical calculations performed in the present and previous studies shows that density functional theory very well describes polymeric CO2.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • Carbon
  • phase
  • theory
  • experiment
  • Oxygen
  • density functional theory
  • space group
  • bulk modulus