People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ala-Nissila, Tapio
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Adsorption of polyelectrolytes in the presence of varying dielectric discontinuity between solution and substratecitations
- 2023Theoretical and computational analysis of the electrophoretic polymer mobility inversion induced by charge correlationscitations
- 2021Silica-silicon composites for near-infrared reflectioncitations
- 2021Silica-silicon composites for near-infrared reflection: A comprehensive computational and experimental studycitations
- 2019Theoretical modeling of polymer translocationcitations
- 2019Thermoplasmonic Response of Semiconductor Nanoparticlescitations
- 2019Phase-field crystal model for heterostructurescitations
- 2018Dielectric trapping of biopolymers translocating through insulating membranescitations
- 2016Electrostatic energy barriers from dielectric membranes upon approach of translocating DNA moleculescitations
- 2016Global transition path search for dislocation formation in Ge on Si(001)citations
- 2016Novel microstructured polyol-polystyrene composites for seasonal heat storagecitations
- 2016Multiscale modeling of polycrystalline graphenecitations
- 2015Entropy production in a non-Markovian environmentcitations
- 2014Biopolymer Filtration in Corrugated Nanochannelscitations
- 2014Electrostatic correlations on the ionic selectivity of cylindrical membrane nanoporescitations
- 2013Microscopic formulation of non-local electrostatics in polar liquids embedding polarizable ionscitations
- 2013Modeling Self-Organization of Thin Strained Metallic Overlayers from Atomic to Micron Scalescitations
- 2013Alteration of gas phase ion polarizabilities upon hydration in high dielectric liquidscitations
- 2012Unifying model of driven polymer translocationcitations
- 2012Correlations between mechanical, structural, and dynamical properties of polymer nanocompositescitations
- 2012Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocompositescitations
- 2009Thermodynamics of bcc metals in phase-field-crystal modelscitations
- 2009Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase-field crystal modelcitations
- 2007Interplay between steps and non-equilibrium effects in surface diffusion for a lattice-gas model of O/W(110)citations
- 2007Polymer scaling and dynamics in steady-state sedimentation at infinite Peclet numbercitations
- 2002Effects of quenched impurities on surface diffusion, spreading and ordering of O/W(110)citations
- 2001Density profile evolution and nonequilibrium effects in partial and full spreading measurements of surface diffusioncitations
Places of action
Organizations | Location | People |
---|
article
Entropy production in a non-Markovian environment
Abstract
Stochastic thermodynamics and the associated fluctuation relations provide the means to extend the fundamental laws of thermodynamics to small scales and systems out of equilibrium. The fluctuating thermodynamic variables are usually treated in the context of either isolated Hamiltonian evolution, or Markovian dynamics in open systems. However, there is no reason a priori why the Markovian approximation should be valid in driven systems under nonequilibrium conditions. In this work, we introduce an explicitly non-Markovian model of dynamics of an open system, where the correlations between the system and the environment drive a subset of the environment out of equilibrium. Such an environment gives rise to a new type of non-Markovian entropy production term. Such non-Markovian components must be taken into account in order to recover the fluctuation relations for entropy. As a concrete example, we explicitly derive such modified fluctuation relations for the case of an overheated single electron box.