People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Benzerara, Olivier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Role of torsional potential in chain conformation, thermodynamics, and glass formation of simulated polybutadiene meltscitations
- 2018Shear-stress fluctuations and relaxation in polymer glassescitations
- 2017Numerical determination of shear stress relaxation modulus of polymer glassescitations
- 2012Mechanical behavior of linear amorphous polymers: Comparison between molecular dynamics and finite-element simulationscitations
- 2010Molecular dynamics simulations as a way to investigate the local physics of contact mechanics: a comparison between experimental data and numerical resultscitations
- 2010Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrixcitations
Places of action
Organizations | Location | People |
---|
article
Mechanical behavior of linear amorphous polymers: Comparison between molecular dynamics and finite-element simulations
Abstract
This paper studies the rheology of weakly entangled polymer melts and films in the glassy domain and near the rubbery domain using two different methods: molecular dynamics (MD) and finite element (FE) simulations. In a first step, the uniaxial mechanical behavior of a bulk polymer sample is studied by means of particle-based MD simulations. The results are in good agreement with experimental data, and mechanical properties may be computed from the simulations. This uniaxial mechanical behavior is then implemented in FE simulations using an elasto-viscoelasto-viscoplastic constitutive law in a continuum mechanics (CM) approach. In a second step, the mechanical response of a polymer film during an indentation test is modeled with the MD method and with the FE simulations using the same constitutive law. Good agreement is found between the MD and CM results. This work provides evidence in favor of using MD simulations to investigate the local physics of contact mechanics, since the volume elements studied are representative and thus contain enough information about the microstructure of the polymer model, while surface phenomena (adhesion and surface tension) are naturally included in the MD approach.