Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rimbert, Nicolas

  • Google
  • 12
  • 24
  • 90

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Primary and secondary breakup of molten Ti64 in an EIGA atomizer for metal powder production2citations
  • 2023Primary and secondary breakup of molten Ti64 in an EIGA atomizer for metal powder productioncitations
  • 2023Swirling supersonic gas flow in an EIGA atomizer for metal powder production: Numerical investigation and experimental validation11citations
  • 2021Direct and Inverse "Cascade" during Fragmentation of a Liquid Metal Jet into Watercitations
  • 2020Spheroidal droplet deformation, oscillation and breakup in uniform outer flow37citations
  • 2020Spheroidal droplet deformation, oscillation and breakup in uniform outer flowcitations
  • 2019Fragmentation of a liquid metal jet into watercitations
  • 2017Interplay between liquid-liquid secondary fragmentation and solidificationcitations
  • 2014Modeling the Dynamics of Precipitation and Agglomeration of Oxide Inclusions in Liquid Steel17citations
  • 2011Crossover between Rayleigh-Taylor instability and turbulent cascading atomization mechanism in the bag-breakup regime23citations
  • 2010Liquid Atomization out of a Full Cone Pressure Swirl Nozzlecitations
  • 2010Crossover between Rayleigh-Taylor Instability and turbulent cascading atomization mechanism in the bag-breakup regimecitations

Places of action

Chart of shared publication
Chapelle, Pierre
3 / 9 shared
Qaddah, Baraa
3 / 3 shared
Deborde, Agathe
3 / 5 shared
Hammes, Raphael
2 / 2 shared
Bellot, Jean-Pierre
2 / 8 shared
Kewalramani, Gagan
2 / 2 shared
Jourdan, Julien
3 / 8 shared
Hammes, Raphaël
1 / 2 shared
Bellot, Jean Pierre
1 / 4 shared
Franceschini, Aurélie
1 / 1 shared
Meignen, Renaud
5 / 6 shared
Hadj-Achour, Miloud
2 / 2 shared
Gradeck, Michel
5 / 13 shared
Labergue, Alexandre
2 / 2 shared
Ji, Bowen
1 / 1 shared
Hadj Achour, Miloud
1 / 1 shared
Castrillon Escobar, Sebastian
1 / 1 shared
Achour, Miloud Hadj
1 / 1 shared
Escobar, Sebastian Castrillon
1 / 1 shared
Miloud, Hadj-Achour
1 / 1 shared
Gardin, P.
1 / 4 shared
Lehmann, J.
1 / 3 shared
Claudotte, Laurent
1 / 1 shared
Castanet, Guillaume
3 / 3 shared
Chart of publication period
2024
2023
2021
2020
2019
2017
2014
2011
2010

Co-Authors (by relevance)

  • Chapelle, Pierre
  • Qaddah, Baraa
  • Deborde, Agathe
  • Hammes, Raphael
  • Bellot, Jean-Pierre
  • Kewalramani, Gagan
  • Jourdan, Julien
  • Hammes, Raphaël
  • Bellot, Jean Pierre
  • Franceschini, Aurélie
  • Meignen, Renaud
  • Hadj-Achour, Miloud
  • Gradeck, Michel
  • Labergue, Alexandre
  • Ji, Bowen
  • Hadj Achour, Miloud
  • Castrillon Escobar, Sebastian
  • Achour, Miloud Hadj
  • Escobar, Sebastian Castrillon
  • Miloud, Hadj-Achour
  • Gardin, P.
  • Lehmann, J.
  • Claudotte, Laurent
  • Castanet, Guillaume
OrganizationsLocationPeople

article

Crossover between Rayleigh-Taylor instability and turbulent cascading atomization mechanism in the bag-breakup regime

  • Castanet, Guillaume
  • Rimbert, Nicolas
Abstract

The question of whether liquid atomization depends on instability dynamics (through refinements of Rayleigh-Plateau, Rayleigh-Taylor, or Kelvin-Helmholtz mechanisms) or on turbulent cascades, as suggested by Richardson and Kolmogorov, is still open. In this paper, experimental results reveal that both mechanisms are needed to explain the probability density functions (PDFs) of the droplets in a spray obtained from an industrial fan spray nozzle. Instability of Rayleigh-Taylor type controls the size of the largest droplets while the smallest droplets follow a PDF given by a turbulent cascading mechanism characterized by a log-Lévy stable law that has a stability parameter equal to 1.70. This value is very close to the inverse value of the Flory exponent and can be related to a recent model developed by N. Rimbert for intermittency modeling stemming from self-avoiding random vortex stretching.

Topics
  • density
  • impedance spectroscopy
  • reactive
  • random
  • atomization