Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tanguy, Anne

  • Google
  • 11
  • 21
  • 134

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Thermomechanical dissipative behaviour of CuZr metallic glassescitations
  • 2021Elasto-plastic behavior of amorphous materials: a brief review ; Comptes Rendus Physique15citations
  • 2021Shear Banding in a Contact Problem between Metallic Glasses4citations
  • 2020Continuum constitutive laws to describe acoustic attenuation in glasses6citations
  • 2020Influence of the shape and interconnection of nanoparticleson the lattice thermal conductivity in a c-Si/a-Si nanocompositecitations
  • 2020Vibrational density of states of free and embedded semiconducting GaN nanoparticles3citations
  • 2019Enhancement and anticipation of the Ioffe-Regel crossover in amorphous/nanocrystalline composites ; Exaltation et anticipation du crossover de Ioffe-Regel dans des composites amorphe/nanocristallins21citations
  • 2017Effect of composition and pressure on the shear strength of sodium silicate glasses: An atomic scale simulation study24citations
  • 2016Densification dependent yield criteria for sodium silicate glasses - An atomistic simulation approach34citations
  • 2016Sodium effect on static mechanical behavior of MD-modeled sodium silicate glasses24citations
  • 2016Transition from ductile to brittle failure of sodium silicate glasses: a numerical study3citations

Places of action

Chart of shared publication
Sepulveda-Macias, Matias
1 / 1 shared
Molnár, Gergely
1 / 7 shared
Nélias, Daniel
1 / 8 shared
Chaise, Thibaut
1 / 13 shared
Chen, Peifang
1 / 1 shared
Schirmacher, Walter
1 / 3 shared
Luo, H.
1 / 2 shared
Giordano, Valentina
1 / 9 shared
Gravouil, A.
1 / 3 shared
Termentzidis, Konstantinos
2 / 20 shared
Desmarchelier, Paul
3 / 5 shared
Beltukov, Yaroslav
1 / 1 shared
Giordano, Valentina, M.
1 / 3 shared
Tlili, Ameni
1 / 1 shared
Merabia, Samy
1 / 12 shared
Ganster, Patrick
4 / 10 shared
Molnar, Gergely
4 / 9 shared
Kermouche, Guillaume
2 / 48 shared
Barthel, Etienne
1 / 18 shared
Török, J.
1 / 1 shared
Török, János
1 / 1 shared
Chart of publication period
2024
2021
2020
2019
2017
2016

Co-Authors (by relevance)

  • Sepulveda-Macias, Matias
  • Molnár, Gergely
  • Nélias, Daniel
  • Chaise, Thibaut
  • Chen, Peifang
  • Schirmacher, Walter
  • Luo, H.
  • Giordano, Valentina
  • Gravouil, A.
  • Termentzidis, Konstantinos
  • Desmarchelier, Paul
  • Beltukov, Yaroslav
  • Giordano, Valentina, M.
  • Tlili, Ameni
  • Merabia, Samy
  • Ganster, Patrick
  • Molnar, Gergely
  • Kermouche, Guillaume
  • Barthel, Etienne
  • Török, J.
  • Török, János
OrganizationsLocationPeople

article

Continuum constitutive laws to describe acoustic attenuation in glasses

  • Schirmacher, Walter
  • Tanguy, Anne
  • Luo, H.
  • Giordano, Valentina
  • Gravouil, A.
Abstract

Nowadays metamaterials are at the focus of an intense research as promising for thermal and acoustic engineering. However, the computational cost associated to the large system size required for correctly simulating them imposes the use of finite-elements simulations, developing continuum models, able to grasp the physics at play without entering in the atomistic details. Still, a correct description should be able to reproduce not only the extrinsic scattering sources on waves propagation, as introduced by the metamaterial microstructure, but also the intrinsic wave attenuation of the material itself. This becomes dramatically important when the metamaterial is made out of a glass, which is intrinsically highly dissipative and with a wave attenuation strongly dependent on frequency. Here we propose a continuum mechanical model for a viscoelastic medium, able to bridge atomic and macroscopic scale in amorphous materials and describe phonon attenuation due to atomistic mechanisms, characterized by a defined frequency dependence. This represents a first decisive step for investigating the effect of a complex nano- or microstructure on acoustic attenuation, while including the atomistic contribution as well.

Topics
  • impedance spectroscopy
  • microstructure
  • amorphous
  • simulation
  • glass
  • glass
  • metamaterial