People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ostanin, Igor
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2020Collapse modes in SC and BCC arrangements of elastic beads
- 2020Collapse modes in simple cubic and body-centered cubic arrangements of elastic beads
- 2019High-Performance Numerical Modeling of Nanofabrics with Distinct Element Method
- 2019Distinct element simulation of mechanical properties of hypothetical CNT nanofabrics
- 2019Single-walled carbon nanotube membranes for optical applications in the extreme ultraviolet range
- 2016What Lies Beneath the Surface: Topological-Shape Optimization With the Kernel-Independent Fast Multipole Method
Places of action
Organizations | Location | People |
---|
article
Collapse modes in simple cubic and body-centered cubic arrangements of elastic beads
Abstract
Collapse modes in compressed simple cubic (SC) and body-centered cubic (BCC) periodic arrangements of elastic frictionless beads were studied numerically using the discrete element method. Under pure hydrostatic compression, the SC arrangement tends to transform into a defective hexagonal close-packed or amorphous structure. The BCC assembly exhibits several modes of collapse, one of which, identified as cI16 structure, is consistent with the behavior of BCC metals Li and Na under high pressure. The presence of a deviatoric stress leads to the transformation of the BCC structure into face-centered cubic (FCC) one via the Bain path. The observed effects expand the knowledge on possible packings of soft elastic spheres and transformations between them, while providing an unexpected link with the mechanical behavior of certain atomic systems.