Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Spisak, Jacob

  • Google
  • 1
  • 14
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Exploration of the polarization angle variability of the Crab Nebula with POLARBEAR and its application to the search for axionlike particles5citations

Places of action

Chart of shared publication
Piccirillo, Lucio
1 / 2 shared
Keating, Brian
1 / 1 shared
Adkins, Tylor
1 / 1 shared
Feng, Chang
1 / 1 shared
Lee, Adrian
1 / 1 shared
Fabbian, Giulio
1 / 1 shared
Errard, Josquin
1 / 1 shared
Jeong, Oliver
1 / 1 shared
Kusaka, Akito
1 / 2 shared
Adachi, Shunsuke
1 / 2 shared
Murata, Masaaki
1 / 1 shared
Reichardt, Christian
1 / 1 shared
Teply, Grant P.
1 / 1 shared
Baccigalupi, Carlo
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Piccirillo, Lucio
  • Keating, Brian
  • Adkins, Tylor
  • Feng, Chang
  • Lee, Adrian
  • Fabbian, Giulio
  • Errard, Josquin
  • Jeong, Oliver
  • Kusaka, Akito
  • Adachi, Shunsuke
  • Murata, Masaaki
  • Reichardt, Christian
  • Teply, Grant P.
  • Baccigalupi, Carlo
OrganizationsLocationPeople

article

Exploration of the polarization angle variability of the Crab Nebula with POLARBEAR and its application to the search for axionlike particles

  • Piccirillo, Lucio
  • Keating, Brian
  • Adkins, Tylor
  • Feng, Chang
  • Lee, Adrian
  • Fabbian, Giulio
  • Errard, Josquin
  • Jeong, Oliver
  • Kusaka, Akito
  • Adachi, Shunsuke
  • Spisak, Jacob
  • Murata, Masaaki
  • Reichardt, Christian
  • Teply, Grant P.
  • Baccigalupi, Carlo
Abstract

<jats:p>The Crab Nebula, also known as Tau A, is a polarized astronomical source at millimeter wavelengths. It has been used as a stable light source for polarization angle calibration in millimeter-wave astronomy. However, it is known that its intensity and polarization vary as a function of time at a variety of wavelengths. Thus, it is of interest to verify the stability of the millimeter-wave polarization. If detected, polarization variability may be used to better understand the dynamics of Tau A, and for understanding the validity of Tau A as a calibrator. One intriguing application of such observation is to use it for the search of axionlike particles (ALPs). Ultralight ALPs couple to photons through a Chern-Simons term, and induce a temporal oscillation in the polarization angle of linearly polarized sources. After assessing a number of systematic errors and testing for internal consistency, we evaluate the variability of the polarization angle of the Crab Nebula using 2015 and 2016 observations with the 150 GHz P instrument. We place a median 95% upper bound of polarization oscillation amplitude <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mi>A</a:mi><a:mo>&lt;</a:mo><a:mn>0.06</a:mn><a:mn>5</a:mn><a:mi>°</a:mi></a:math> over the oscillation frequencies from <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:mn>0.75</c:mn><c:mtext> </c:mtext><c:mtext> </c:mtext><c:msup><c:mi>year</c:mi><c:mrow><c:mo>−</c:mo><c:mn>1</c:mn></c:mrow></c:msup></c:mrow></c:math> to <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:mn>0.66</e:mn><e:mtext> </e:mtext><e:mtext> </e:mtext><e:msup><e:mrow><e:mi>hour</e:mi></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>1</e:mn></e:mrow></e:msup></e:mrow></e:math>. Assuming that no sources other than ALP are causing Tau A’s polarization angle variation, that the ALP constitutes all the dark matter, and that the ALP field is a stochastic Gaussian field, this bound translates into a median 95% upper bound of ALP-photon coupling <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" display="inline"><g:msub><g:mi>g</g:mi><g:mrow><g:mi>a</g:mi><g:mi>γ</g:mi><g:mi>γ</g:mi></g:mrow></g:msub><g:mo>&lt;</g:mo><g:mn>2.16</g:mn><g:mo>×</g:mo><g:msup><g:mn>10</g:mn><g:mrow><g:mo>−</g:mo><g:mn>12</g:mn></g:mrow></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:msup><g:mrow><g:mi>GeV</g:mi></g:mrow><g:mrow><g:mo>−</g:mo><g:mn>1</g:mn></g:mrow></g:msup><g:mo>×</g:mo><g:mo stretchy="false">(</g:mo><g:msub><g:mi>m</g:mi><g:mi>a</g:mi></g:msub><g:mo>/</g:mo><g:msup><g:mn>10</g:mn><g:mrow><g:mo>−</g:mo><g:mn>21</g:mn></g:mrow></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>eV</g:mi><g:mo stretchy="false">)</g:mo></g:math> in the mass range from <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:mrow><k:mn>9.9</k:mn><k:mo>×</k:mo><k:msup><k:mn>10</k:mn><k:mrow><k:mo>−</k:mo><k:mn>23</k:mn></k:mrow></k:msup><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>eV</k:mi></k:mrow></k:math> to <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:mn>7.7</m:mn><m:mo>×</m:mo><m:msup><m:mn>10</m:mn><m:mrow><m:mo>−</m:mo><m:mn>19</m:mn></m:mrow></m:msup><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>eV</m:mi></m:mrow></m:math>. This demonstrates that this type of analysis using bright polarized sources is as competitive as those using the polarization of cosmic microwave background in constraining ALPs.</jats:p><jats:sec><jats:title/><jats:supplementary-material><jats:permissions><jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement><jats:copyright-year>2024</jats:copyright-year></jats:permissions></jats:supplementary-material></jats:sec>

Topics
  • impedance spectroscopy
  • size-exclusion chromatography