People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Piccirillo, Lucio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Exploration of the polarization angle variability of the Crab Nebula with POLARBEAR and its application to the search for axionlike particles
Abstract
<jats:p>The Crab Nebula, also known as Tau A, is a polarized astronomical source at millimeter wavelengths. It has been used as a stable light source for polarization angle calibration in millimeter-wave astronomy. However, it is known that its intensity and polarization vary as a function of time at a variety of wavelengths. Thus, it is of interest to verify the stability of the millimeter-wave polarization. If detected, polarization variability may be used to better understand the dynamics of Tau A, and for understanding the validity of Tau A as a calibrator. One intriguing application of such observation is to use it for the search of axionlike particles (ALPs). Ultralight ALPs couple to photons through a Chern-Simons term, and induce a temporal oscillation in the polarization angle of linearly polarized sources. After assessing a number of systematic errors and testing for internal consistency, we evaluate the variability of the polarization angle of the Crab Nebula using 2015 and 2016 observations with the 150 GHz P instrument. We place a median 95% upper bound of polarization oscillation amplitude <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mi>A</a:mi><a:mo><</a:mo><a:mn>0.06</a:mn><a:mn>5</a:mn><a:mi>°</a:mi></a:math> over the oscillation frequencies from <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:mn>0.75</c:mn><c:mtext> </c:mtext><c:mtext> </c:mtext><c:msup><c:mi>year</c:mi><c:mrow><c:mo>−</c:mo><c:mn>1</c:mn></c:mrow></c:msup></c:mrow></c:math> to <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:mn>0.66</e:mn><e:mtext> </e:mtext><e:mtext> </e:mtext><e:msup><e:mrow><e:mi>hour</e:mi></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>1</e:mn></e:mrow></e:msup></e:mrow></e:math>. Assuming that no sources other than ALP are causing Tau A’s polarization angle variation, that the ALP constitutes all the dark matter, and that the ALP field is a stochastic Gaussian field, this bound translates into a median 95% upper bound of ALP-photon coupling <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" display="inline"><g:msub><g:mi>g</g:mi><g:mrow><g:mi>a</g:mi><g:mi>γ</g:mi><g:mi>γ</g:mi></g:mrow></g:msub><g:mo><</g:mo><g:mn>2.16</g:mn><g:mo>×</g:mo><g:msup><g:mn>10</g:mn><g:mrow><g:mo>−</g:mo><g:mn>12</g:mn></g:mrow></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:msup><g:mrow><g:mi>GeV</g:mi></g:mrow><g:mrow><g:mo>−</g:mo><g:mn>1</g:mn></g:mrow></g:msup><g:mo>×</g:mo><g:mo stretchy="false">(</g:mo><g:msub><g:mi>m</g:mi><g:mi>a</g:mi></g:msub><g:mo>/</g:mo><g:msup><g:mn>10</g:mn><g:mrow><g:mo>−</g:mo><g:mn>21</g:mn></g:mrow></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>eV</g:mi><g:mo stretchy="false">)</g:mo></g:math> in the mass range from <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:mrow><k:mn>9.9</k:mn><k:mo>×</k:mo><k:msup><k:mn>10</k:mn><k:mrow><k:mo>−</k:mo><k:mn>23</k:mn></k:mrow></k:msup><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>eV</k:mi></k:mrow></k:math> to <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:mn>7.7</m:mn><m:mo>×</m:mo><m:msup><m:mn>10</m:mn><m:mrow><m:mo>−</m:mo><m:mn>19</m:mn></m:mrow></m:msup><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>eV</m:mi></m:mrow></m:math>. This demonstrates that this type of analysis using bright polarized sources is as competitive as those using the polarization of cosmic microwave background in constraining ALPs.</jats:p><jats:sec><jats:title/><jats:supplementary-material><jats:permissions><jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement><jats:copyright-year>2024</jats:copyright-year></jats:permissions></jats:supplementary-material></jats:sec>