Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hayashi, Tomoki

  • Google
  • 1
  • 3
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Decreasing activation energy of fast relaxation processes in a metallic glass during aging13citations

Places of action

Chart of shared publication
Luckabauer, Martin
1 / 19 shared
Kato, Hidemi
1 / 26 shared
Ichitsubo, Tetsu
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Luckabauer, Martin
  • Kato, Hidemi
  • Ichitsubo, Tetsu
OrganizationsLocationPeople

article

Decreasing activation energy of fast relaxation processes in a metallic glass during aging

  • Luckabauer, Martin
  • Kato, Hidemi
  • Hayashi, Tomoki
  • Ichitsubo, Tetsu
Abstract

Many of the macroscopic properties of a glass are determined by the degree of structural relaxation. When the nonequilibrium system ages toward a thermodynamically more favorable state, the accompanying densification leads to an increase of the activation energies found for the α and especially the β relaxation processes. In this work we experimentally quantify the low-energy mechanical relaxation spectrum of a metallic glass at cryogenic temperatures, and show that these relaxation processes intriguingly show the opposite trend. The energy scale as well as the relaxation strength decrease during the aging process below the glass transition temperature with a surprisingly strong dependence on the annealing time. The experimental results are analyzed in the framework of established models and the temporal behavior of the typical energy V0 is assessed. We compare the derived values to the values of the thermal energy available at the estimated fictive temperature of the given state and find that the absolute values as well as their temporal behavior show a high degree of correlation for the studied metallic glass. The decreasing characteristic energy values found in the present experiment directly depict the evolution of the structure toward a hypothetical lowest entropy state before the glass becomes structurally indistinguishable from a crystalline material.

Topics
  • impedance spectroscopy
  • experiment
  • glass
  • glass
  • strength
  • glass transition temperature
  • aging
  • annealing
  • activation
  • densification
  • aging