People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lhuillier, Emmanuel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Advancing the Coupling of III-V Quantum Dots to Photonic Structures to Shape Their Emission Diagramcitations
- 2024The Electronic Impact of Light-Induced Degradation in CsPbBr3 Perovskite Nanocrystals at Gold Interfacescitations
- 2024THz scanning near-field microscopy of HgTe nanocrystals
- 2023Unidirectional Rashba spin splitting in single layer WS<sub>2(1−x)</sub>Se<sub>2x</sub> alloycitations
- 2023Unidirectional Rashba Spin Splitting in Single Layer WS2(1-x)Se2x alloycitations
- 2022Chiral Helices Formation by Self-Assembled Molecules on Semiconductor Flexible Substratescitations
- 2022Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxycitations
- 2022Critical role of water on the synthesis and gelling of gamma-In2S3 nanoribbons with giant aspect ratio
- 2022Colloidal II–VI—Epitaxial III–V heterostructure: A strategy to expand InGaAs spectral responsecitations
- 2021Indirect to direct band gap crossover in two-dimensional WS2(1−x)Se2x alloyscitations
- 2021Indirect to direct band gap crossover in two-dimensional WS 2(1-x) Se 2x alloys
- 2020A nanoplatelet-based light emitting diode and its use for all-nanocrystal LiFi-like communicationcitations
- 2020Time Resolved Photoemission to Unveil Electronic Coupling Between Absorbing and Transport Layers in a Quantum Dot Based Solar Cellcitations
- 2020Interactions Between Topological Defects and Nanoparticlescitations
- 2020Pushing absorption of perovskite nanocrystals into the infraredcitations
- 2020Pushing absorption of perovskite nanocrystals into the infraredcitations
- 2019Nanophotonic approaches for integrated quantum photonics
- 2019Halide Ligands to Release Strain in Cadmium Chalcogenide Nanoplatelets and Achieve High Brightnesscitations
- 2018Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr 3 single nanocrystalscitations
- 2017Interface dipole and band bending in the hybrid p − n heterojunction Mo S 2 / GaN ( 0001 )citations
- 2017Interface dipole and band bending in the hybrid p − n heterojunction Mo S 2 / GaN ( 0001 )citations
- 2017Probing Charge Carrier Dynamics to Unveil the Role of Surface Ligands in HgTe Narrow Band Gap Nanocrystalscitations
- 2017Electronic structure of CdSe-ZnS 2D nanoplateletscitations
- 2016van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Propertiescitations
- 2016Phototransport in colloidal nanoplatelets arraycitations
- 2011Thermal properties of mid-infrared colloidal quantum dot detectorscitations
Places of action
Organizations | Location | People |
---|
article
Interface dipole and band bending in the hybrid p − n heterojunction Mo S 2 / GaN ( 0001 )
Abstract
Hybrid heterostructures based on bulk GaN and two-dimensional (2D) materials offer novel paths toward nanoelectronic devices with engineered features. Here, we study the electronic properties of a mixed-dimensional heterostructure composed of intrinsic n-doped MoS2 flakes transferred on p-doped GaN(0001) layers. Based on angle-resolved photoemission spectroscopy (ARPES) and high resolution x-ray photoemission spectroscopy (HR-XPS), we investigate the electronic structure modification induced by the interlayer interactions in MoS2/GaN heterostructure. In particular, a shift of the valence band with respect to the Fermi level for MoS2/GaN heterostructure is observed, which is the signature of a charge transfer from the 2D monolayer MoS2 to GaN. The ARPES and HR-XPS revealed an interface dipole associated with local charge transfer from the GaN layer to the MoS2 monolayer. Valence and conduction band offsets between MoS2 and GaN are determined to be 0.77 and −0.51eV, respectively. Based on the measured work functions and band bendings, we establish the formation of an interface dipole between GaN and MoS2 of 0.2 eV.