People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larsen, Peter Mahler
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2017Alloy design as an inverse problem of cluster expansion modelscitations
- 2017Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structurescitations
- 2017Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structurescitations
- 2017Determination of low-strain interfaces via geometric matchingcitations
Places of action
Organizations | Location | People |
---|
article
Determination of low-strain interfaces via geometric matching
Abstract
We present a general method for combining two crystals into an interface. The method finds all possible interfaces between the crystals with small coincidence cells and identifies the strain and area of the corresponding two-dimensional cells of the two crystal surfaces. We apply the method to the two semiconductor alloys InAs<sub>1−x</sub>Sbx and Ga<sub>x</sub>In<sub>1−x</sub>As combined with a selection of pure metals or with NbTiN to create semiconductor/superconductor interfaces. The lattice constant of the alloy can be tuned by composition and we can extract the alloy lattice parameters corresponding to zero strain in both the metal and the alloy. The results can be used to suggest new epitaxially matched interfaces between two materials.