Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hutchison, Wayne D.

  • Google
  • 2
  • 11
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Critical concentrations of Zn and Mg for enhanced diamagnetism in Al-Zn-Mg alloys2citations
  • 2017Magnetic structure of DyN11citations

Places of action

Chart of shared publication
Isikawa, Yosikazu
1 / 2 shared
Tsuchiya, Taiki
1 / 2 shared
Matsuda, Kenji
1 / 13 shared
Nunomura, Norio
1 / 2 shared
Bendo, Artenis
1 / 7 shared
Imai, Kosuke
1 / 1 shared
Adachi, Hiroki
1 / 3 shared
Stewart, Glen A.
1 / 1 shared
Evans, Jacob P.
1 / 1 shared
Cadogan, J. M.
1 / 5 shared
Mitchell, Emma E.
1 / 1 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Isikawa, Yosikazu
  • Tsuchiya, Taiki
  • Matsuda, Kenji
  • Nunomura, Norio
  • Bendo, Artenis
  • Imai, Kosuke
  • Adachi, Hiroki
  • Stewart, Glen A.
  • Evans, Jacob P.
  • Cadogan, J. M.
  • Mitchell, Emma E.
OrganizationsLocationPeople

article

Magnetic structure of DyN

  • Stewart, Glen A.
  • Evans, Jacob P.
  • Cadogan, J. M.
  • Mitchell, Emma E.
  • Hutchison, Wayne D.
Abstract

<p>Conventional magnetometry yields a low temperature bulk magnetic moment of about 4<i>μ</i><sub>B</sub>/Dy<sup>3+</sup> in an applied field of <i>μ</i><sub>0</sub><i>H</i> =9 T for thin and thick dysprosium nitride (DyN) films. This is significantly lower than the maximum possible value of 10<i> μ</i><sub>B</sub>/Dy<sup>3+</sup>. Ion-assisted deposition was used to grow 5.7-<i>μ</i>m-thick rare earth nitride DyN films on organic Kapton® substrates.<sup> 161</sup>Dy Mössbauer spectroscopy (with its time scale on the order of nanoseconds) indicates thermal relaxation between fully stretched ±10<i>μ</i><sub>B</sub> levels of a low-lying Kramers doublet, which is inconsistent with the Dy<sup>3+</sup> site's ideal cubic symmetry. However, a small tetragonal distortion [ϵ ≈ -0.024(10)] observed using x-ray powder diffraction is compatible with an additional rank 2 crystal field term,<i> B</i><sup>0</sup><sub>2</sub> ≈ -1.0(4)K, approaching the magnitude estimated to bring this about. The observed magnetic behavior can then be described using a two-level, molecular field model with θ<sub>C</sub> set to ≈6-8K, which is substantially smaller than the accepted ordering temperature of T<sub>C</sub>≈17-26K.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • nitride
  • Mössbauer spectroscopy
  • Dysprosium