People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fangohr, Hans
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020fmmgen
- 2018Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interactioncitations
- 2016Resonant translational, breathing and twisting modes of pinned transverse magnetic domain wallscitations
- 2012Ultrahard magnetic nanostructurescitations
- 2010Fabrication and simulation of nanostructures for domain wall magnetoresistance studies on nickelcitations
- 2008Numerical investigation of domain walls in constrained geometriescitations
- 2007Geometrical multilayers: coercivity in magnetic 3-D nanostructurescitations
- 2007Analysis of magnetoresistance in arrays of connected nano-ringscitations
- 2007A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmagcitations
- 2006Magnetic anisotropy in the cubic Laves REFe2 intermetallic compoundscitations
- 2005Shape-induced anisotropy in antidot arrays from self-assembled templatescitations
Places of action
Organizations | Location | People |
---|
article
Resonant translational, breathing and twisting modes of pinned transverse magnetic domain walls
Abstract
We study translational, breathing and twisting resonant modes of transverse magnetic domain walls pinned at notches in ferromagnetic nanostrips. We demonstrate that a mode's sensitivity to notches depends strongly on the characteristics of that particular resonance. For example, the frequencies of modes involving lateral motion of the wall are the ones which are most sensitive to changes in the notch intrusion depth (especially at the narrower, more strongly confined end of the domain wall). In contrast, the breathing mode, whose dynamics are concentrated away from the notches is relatively insensitive to changes in the notches' sizes. We also demonstrate a sharp drop in the translational mode's frequency towards zero when approaching depinning which is found, using a harmonic oscillator model, to be consistent with a reduction in the local slope of the notch-induced confining potential at its edge.