Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Du, Chunhui

  • Google
  • 1
  • 8
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Imaging interfaces defined by abruptly varying internal magnetic fields by means of scanned nanoscale spin wave modes8citations

Places of action

Chart of shared publication
Buchner, Bernd
1 / 2 shared
Obukhov, Yuri
1 / 1 shared
Lee, Inhee
1 / 1 shared
Hamann, Christine
1 / 2 shared
Adur, Rohan
1 / 1 shared
Mccord, Jeffrey
1 / 40 shared
Pelekhov, Denis V.
1 / 1 shared
Hammel, P. Chris
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Buchner, Bernd
  • Obukhov, Yuri
  • Lee, Inhee
  • Hamann, Christine
  • Adur, Rohan
  • Mccord, Jeffrey
  • Pelekhov, Denis V.
  • Hammel, P. Chris
OrganizationsLocationPeople

article

Imaging interfaces defined by abruptly varying internal magnetic fields by means of scanned nanoscale spin wave modes

  • Buchner, Bernd
  • Obukhov, Yuri
  • Lee, Inhee
  • Hamann, Christine
  • Adur, Rohan
  • Du, Chunhui
  • Mccord, Jeffrey
  • Pelekhov, Denis V.
  • Hammel, P. Chris
Abstract

<p>Nanoscale devices fabricated out of magnetic heterostructures are central to the emerging field of spintronics, so understanding of magnetization dynamics at interfaces between dissimilar materials is essential. Here we report local imaging of magnetization dynamics at the interface formed by a sharp discontinuity in the magnetic properties of a ferromagnetic thin film using localized mode ferromagnetic resonance force microscopy (FMRFM). The behavior of the localized modes near the interface evolves with increasing magnitude of the FMRFM probe field due to its competition with the steplike internal demagnetizing field. We use micromagnetic modeling to visualize the evolution of the localized mode as the magnetic probe is scanned across the interface. Our results demonstrate the ability to image sharp changes in internal magnetic properties in nanoscale devices and provide insights into the mechanisms underlying the generation and manipulation of localized modes near the interface, thus providing a new tool for microscopic studies of spin transport across magnetic interfaces and spin dynamics in their vicinity.</p>

Topics
  • impedance spectroscopy
  • thin film
  • magnetization
  • microscopy