Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Winkelmann, A.

  • Google
  • 13
  • 103
  • 194

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2023Mapping of lattice distortion in martensitic steel—Comparison of different evaluation methods of EBSD patterns2citations
  • 2022Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscopecitations
  • 2021Site-specific atomic order and band structure tailoring in the diluted magnetic semiconductor (In,Ga,Mn)As22citations
  • 2021Tetragonality mapping of martensite in high-carbon steel by EBSD28citations
  • 2021Bulk spin polarization of magnetite from spin-resolved hard x-ray photoelectron spectroscopy9citations
  • 2021Transmission Kikuchi diffraction: The impact of the signal-to-noise ratio6citations
  • 2020Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope10citations
  • 2020Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscopecitations
  • 2020EBSD orientation analysis based on experimental Kikuchi reference patterns35citations
  • 2020Luminescence behavior of semipolar (101¯1) InGaN/GaN “bow-tie” structures on patterned Si substratescitations
  • 2017Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffraction21citations
  • 2017Exploring transmission Kikuchi diffraction using a Timepix detector10citations
  • 2015Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns51citations

Places of action

Chart of shared publication
Tokarski, T.
4 / 6 shared
Nolze, Gert
4 / 35 shared
Rychlowski, L.
2 / 2 shared
Cios, G.
4 / 12 shared
Bala, P.
2 / 6 shared
Dan, L.
1 / 1 shared
Wang, T.
4 / 17 shared
Trager-Cowan, Carol
5 / 25 shared
Naresh-Kumar, G.
4 / 18 shared
Bai, J.
4 / 17 shared
Hourahine, B.
4 / 4 shared
Vespucci, S.
4 / 4 shared
Schoenhense, Gerd
2 / 5 shared
Yastrubchak, O.
1 / 4 shared
Sawicki, M.
1 / 67 shared
Gluba, L.
1 / 1 shared
Chernov, S.
2 / 3 shared
Vasilyev, D.
2 / 5 shared
Fedchenko, O.
1 / 5 shared
Babenkov, S.
2 / 5 shared
Medjanik, K.
2 / 8 shared
Sadowski, J.
1 / 10 shared
Elmers, Hans-Joachim
2 / 15 shared
Schmitt, Matthias
1 / 10 shared
Schlueter, C.
1 / 12 shared
Gloskovskii, A.
1 / 15 shared
Dudy, Lenart
1 / 5 shared
Fedchenko, Olena
1 / 5 shared
Kirilmaz, Ozan Seyitali
1 / 1 shared
Matveev, Yury
1 / 4 shared
Sing, Michael
1 / 3 shared
Claessen, Ralph
1 / 5 shared
Edwards, Paul
2 / 22 shared
Bruckbauer, J.
2 / 3 shared
Edwards, P. R.
2 / 3 shared
Trager-Cowan, C.
2 / 7 shared
Martin, R. W.
2 / 11 shared
Koziel, T.
1 / 3 shared
Hielscher, R.
1 / 1 shared
Hocker, M.
1 / 1 shared
Yu, X.
1 / 11 shared
Wallace, M. J.
1 / 2 shared
Bauer, S.
1 / 15 shared
Vennéguès, P.
1 / 5 shared
Zhao, X.
1 / 27 shared
Müller, R.
1 / 31 shared
Thonke, K.
1 / 4 shared
Ipsen, A.
1 / 2 shared
Nolze, G.
1 / 2 shared
Vilalta-Clemente, A.
1 / 9 shared
Wilkinson, A. J.
1 / 12 shared
Jussila, H.
1 / 4 shared
Naresh-Kumar, Gunasekar
1 / 1 shared
Subramaniyam, Nagarajan
1 / 1 shared
Mingard, K.
1 / 5 shared
Oshea, V.
2 / 7 shared
Maneuski, D.
2 / 2 shared
Vespucci, Stefano
2 / 3 shared
Mingard, K. P.
1 / 2 shared
Day, A. P.
1 / 3 shared
Chart of publication period
2023
2022
2021
2020
2017
2015

Co-Authors (by relevance)

  • Tokarski, T.
  • Nolze, Gert
  • Rychlowski, L.
  • Cios, G.
  • Bala, P.
  • Dan, L.
  • Wang, T.
  • Trager-Cowan, Carol
  • Naresh-Kumar, G.
  • Bai, J.
  • Hourahine, B.
  • Vespucci, S.
  • Schoenhense, Gerd
  • Yastrubchak, O.
  • Sawicki, M.
  • Gluba, L.
  • Chernov, S.
  • Vasilyev, D.
  • Fedchenko, O.
  • Babenkov, S.
  • Medjanik, K.
  • Sadowski, J.
  • Elmers, Hans-Joachim
  • Schmitt, Matthias
  • Schlueter, C.
  • Gloskovskii, A.
  • Dudy, Lenart
  • Fedchenko, Olena
  • Kirilmaz, Ozan Seyitali
  • Matveev, Yury
  • Sing, Michael
  • Claessen, Ralph
  • Edwards, Paul
  • Bruckbauer, J.
  • Edwards, P. R.
  • Trager-Cowan, C.
  • Martin, R. W.
  • Koziel, T.
  • Hielscher, R.
  • Hocker, M.
  • Yu, X.
  • Wallace, M. J.
  • Bauer, S.
  • Vennéguès, P.
  • Zhao, X.
  • Müller, R.
  • Thonke, K.
  • Ipsen, A.
  • Nolze, G.
  • Vilalta-Clemente, A.
  • Wilkinson, A. J.
  • Jussila, H.
  • Naresh-Kumar, Gunasekar
  • Subramaniyam, Nagarajan
  • Mingard, K.
  • Oshea, V.
  • Maneuski, D.
  • Vespucci, Stefano
  • Mingard, K. P.
  • Day, A. P.
OrganizationsLocationPeople

article

Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

  • Mingard, K. P.
  • Oshea, V.
  • Trager-Cowan, Carol
  • Edwards, Paul
  • Day, A. P.
  • Maneuski, D.
  • Vespucci, Stefano
  • Winkelmann, A.
  • Naresh-Kumar, G.
Abstract

Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which ...

Topics
  • density
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • semiconductor
  • laser emission spectroscopy
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • texture
  • Silicon
  • electron backscatter diffraction