Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stocks, G. Malcolm

  • Google
  • 1
  • 10
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Direct in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling8citations

Places of action

Chart of shared publication
Ambaye, Haile
1 / 3 shared
Ma, Jie
1 / 4 shared
Wimmer, Sebastian
1 / 4 shared
Gai, Zheng
1 / 1 shared
Stoica, Alexandru D.
1 / 1 shared
Shapiro, Steve M.
1 / 1 shared
Glavic, Artur
1 / 8 shared
Samolyuk, German
1 / 3 shared
Aczel, Adam A.
1 / 1 shared
Lauter, Valeria
1 / 7 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Ambaye, Haile
  • Ma, Jie
  • Wimmer, Sebastian
  • Gai, Zheng
  • Stoica, Alexandru D.
  • Shapiro, Steve M.
  • Glavic, Artur
  • Samolyuk, German
  • Aczel, Adam A.
  • Lauter, Valeria
OrganizationsLocationPeople

article

Direct in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling

  • Ambaye, Haile
  • Ma, Jie
  • Wimmer, Sebastian
  • Gai, Zheng
  • Stocks, G. Malcolm
  • Stoica, Alexandru D.
  • Shapiro, Steve M.
  • Glavic, Artur
  • Samolyuk, German
  • Aczel, Adam A.
  • Lauter, Valeria
Abstract

Ferromagnetic shape memory alloys (FSMAs) have shown great potential as active components in next generation smart devices due to their exceptionally large magnetic-field-induced strains and fast response times. During application of magnetic fields in FSMAs, as is common in several magnetoelastic smart materials, there occurs simultaneous rotation of magnetic moments and reorientation of twin variants, resolving which, although critical for design of new materials and devices, has been difficult to achieve quantitatively with current characterization methods. At the same time, theoretical modeling of these phenomena also faced limitations due to uncertainties in values of physical properties such as magnetocrystalline anisotropy energy (MCA), especially for off-stoichiometric FSMA compositions. Here, <i>in situ </i>polarized neutron diffraction is used to measure directly the extents of both magnetic moments rotation and crystallographic twin-reorientation in an FSMA single crystal during the application of magnetic fields. Additionally, high-resolution neutron scattering measurements and first-principles calculations based on fully relativistic density functional theory are used to determine accurately the MCA for the compositionally disordered alloy of Ni<sub>2</sub>Mn<sub>1.14</sub>Ga<sub>0.86</sub>. The results from these state-of-the-art experiments and calculations are self-consistently described within a phenomenological framework, which provides quantitative insights into the energetics of magnetostructural coupling in FSMAs. Based on the current model, the energy for magnetoelastic twin boundaries propagation for the studied alloy is estimated to be ∼150kJ/m<sup>3</sup>.

Topics
  • density
  • impedance spectroscopy
  • single crystal
  • theory
  • experiment
  • neutron diffraction
  • density functional theory
  • neutron scattering