Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abreu Araujo, Flavio

  • Google
  • 11
  • 33
  • 117

Université Catholique de Louvain

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023Interplay between diffusion and magnon-drag thermopower in pure iron and dilute iron alloy nanowire networks2citations
  • 2022Flexible thermoelectric films based on interconnected magnetic nanowire networks8citations
  • 2021Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected NixFe1−x/Cu Multilayered Nanowire Networks12citations
  • 20203D magnetic nanowire networks6citations
  • 2019Flexible spin caloritronic devices based on 3D nanowire networkscitations
  • 2017Spin-Transfer-Torque Driven Vortex Dynamics in Electrodeposited Nanowire Spin-Valves7citations
  • 2016Synthesis of dense arrays of multiferroic CoFe2O4–PbZr0.52Ti0.48O3 core/shell nanocables8citations
  • 2015Two-dimensional quantum transport in highly conductive carbon nanotube fibers20citations
  • 2015Synthesis and magnetic properties of Ni–BaTiO3 nanocable arrays within ordered anodic alumina templates11citations
  • 2013Influence of the packing fraction and host matrix on the magnetoelastic anisotropy in Ni nanowire composite arrays12citations
  • 2012Periodic arrays of magnetic nanostructures by depositing Co/Pt multilayers on the barrier layer of ordered anodic alumina templates31citations

Places of action

Chart of shared publication
Piraux, Luc
10 / 37 shared
Marchal, Nicolas
3 / 9 shared
Da Cãmara Santa Clara Gomes, Tristan
5 / 11 shared
De La Torre Medina, Joaquãn
1 / 3 shared
Spin Caloritronics, X.
1 / 1 shared
Majimel, J.
1 / 3 shared
Basov, S.
1 / 3 shared
Antohe, Vlad. A.
1 / 1 shared
Pereira De Sã, P. M.
1 / 1 shared
Elissalde, C.
1 / 7 shared
Sallagoity, D.
1 / 1 shared
Maglione, M.
1 / 9 shared
Bui, Thi Ngoc Diep
1 / 1 shared
Issi, Jean-Paul
1 / 6 shared
Otto, M. J.
1 / 1 shared
Majimel, Jérôme
1 / 22 shared
Elissalde, Catherine
1 / 79 shared
Antohe, Vlad
1 / 4 shared
Sallagoïty, David
1 / 6 shared
Maglione, Mario
1 / 109 shared
Chung Seu, U-Chan
1 / 11 shared
Penin, Nicolas
1 / 14 shared
Hamoir, Gaël
2 / 2 shared
Berthelot, Romain
1 / 26 shared
Encinas, Armando
1 / 10 shared
De La Torre Medina, Joaquin
1 / 2 shared
Hehn, M.
1 / 11 shared
Srivastava, S. K.
1 / 4 shared
Lacour, D.
1 / 10 shared
Hauet, Thomas
1 / 20 shared
Piraux, L.
1 / 12 shared
Mangin, Stéphane
1 / 22 shared
Antohe, V. A.
1 / 4 shared
Chart of publication period
2023
2022
2021
2020
2019
2017
2016
2015
2013
2012

Co-Authors (by relevance)

  • Piraux, Luc
  • Marchal, Nicolas
  • Da Cãmara Santa Clara Gomes, Tristan
  • De La Torre Medina, Joaquãn
  • Spin Caloritronics, X.
  • Majimel, J.
  • Basov, S.
  • Antohe, Vlad. A.
  • Pereira De Sã, P. M.
  • Elissalde, C.
  • Sallagoity, D.
  • Maglione, M.
  • Bui, Thi Ngoc Diep
  • Issi, Jean-Paul
  • Otto, M. J.
  • Majimel, Jérôme
  • Elissalde, Catherine
  • Antohe, Vlad
  • Sallagoïty, David
  • Maglione, Mario
  • Chung Seu, U-Chan
  • Penin, Nicolas
  • Hamoir, Gaël
  • Berthelot, Romain
  • Encinas, Armando
  • De La Torre Medina, Joaquin
  • Hehn, M.
  • Srivastava, S. K.
  • Lacour, D.
  • Hauet, Thomas
  • Piraux, L.
  • Mangin, Stéphane
  • Antohe, V. A.
OrganizationsLocationPeople

article

Two-dimensional quantum transport in highly conductive carbon nanotube fibers

  • Piraux, Luc
  • Bui, Thi Ngoc Diep
  • Issi, Jean-Paul
  • Abreu Araujo, Flavio
  • Otto, M. J.
Abstract

Measurements of the electrical resistivity, from 1.5 to 300 K, and of the low temperature magnetoresistance of highly conductive carbon nanotube (CNT) fibers, obtained by wet-spinning from liquid crystalline phase (LCP), are reported. At high temperature the results obtained on the raw CNT fibers show a typical metallic behavior and the resistivity levels without postdoping process were found to be only one order of magnitude higher than the best electrical conductors, with the specific conductivity (conductivity per unit weight) comparable to that of pure copper. At low temperature a logarithmic dependence of the resistivity and the temperature dependence of the negative magnetoresistance are consistent with a two-dimensional quantum charge transport—weak localization and Coulomb interaction—in the few-walled CNT fibers. The temperature dependence of the phase-breaking scattering rate has also been determined from magnetoresistance measurements. In the temperature range T <100 K , electron-electron scattering is found to be the dominant source of dephasing in these highly conductive CNT fibers. While quantum effects demonstrate the two-dimensional aspect of conduction in the fibers, the fact that it was found that their resistance is mainly determined by the intrinsic resistivity of the CNTs—and not by intertube resistances—suggests that better practical conductors could be obtained by improving the quality of the CNTs and the fiber morphology....

Topics
  • impedance spectroscopy
  • Carbon
  • resistivity
  • nanotube
  • crystalline phase
  • copper
  • two-dimensional
  • spinning