People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Svendsen, Bob
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023FFT‐based simulation of evolving microstructures utilizing an adapting reduced set of Fourier modes
- 2021FFT‐based homogenization using a reduced set of frequencies and a clustered microstructure
- 2021Phase-Field Modeling of Chemoelastic Binodal/Spinodal Relations and Solute Segregation to Defects in Binary Alloyscitations
- 2020Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metalscitations
- 2020Unveiling the Re effect in Ni-based single crystal superalloyscitations
- 2019Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni–Al–Cocitations
- 2018Laminate-based modelling of single and polycrystalline ferroelectric materialscitations
- 2018Finite-deformation phase-field chemomechanics for multiphase, multicomponent solidscitations
- 2015From generalized stacking fault energies to dislocation properties: Five-energy-point approach and solid solution effects in magnesiumcitations
- 2012Distortion analysis of air hardened deep drawn parts of the air-hardened steel LH800
- 2011Phenomenological modeling of anisotropy induced by evolution of the dislocation structure on the macroscopic and microscopic scale
- 2011Phenomenological modeling of anisotropy induced by evolution of the dislocation structure on the macroscopic and microscopic scalecitations
- 2009Enhanced Micromechanical Modelling of Martensitic Phase-Transitions Considering Plastic Deformationscitations
- 2008Efficient modeling and calculation of sheet metal forming using steel LH800
- 2008Zeiteffiziente Prozesskettenmodellierung und -berechnung in der Blechumformung und -verarbeitung
Places of action
Organizations | Location | People |
---|
article
From generalized stacking fault energies to dislocation properties: Five-energy-point approach and solid solution effects in magnesium
Abstract
Using ab initio calculations and symmetrized plane waves, we analyze the basal-plane generalized stacking fault energies in pure Mg and Mg-Y alloys and show that the knowledge of energies of only five specific points is sufficient to accurately predict the core structures and Peierls stresses of -type edge dislocations. Our five-point approach substantially reduces the computational cost related to the Peierls-Nabarro (PN) model and allows for a high-throughput application of the PN model to study Peierls stress changes in Mg upon alloying.We employ our approach to study Mg binary alloys containing nine rare-earth (RE) and 11 other solutes. Based on the Peierls stresses of these 20 Mg alloys calculated from the Peierls-Nabarro model, the solutes are divided into three groups: (i) the first group lead to more compact dislocation core structures and larger Peierls stresses than in pure Mg. (ii) Elements in the second group, change the core widths and Peierls stresses moderately. (iii) The solutes in the third group extend the stacking fault width, and the Peierls stresses are low.