Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Giraud, Romain

  • Google
  • 2
  • 12
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Magnetotransport measurements on Bi 2 Te 3 nanowires electrodeposited in etched ion-track membranes7citations
  • 2015Direct probing of band-structure Berry phase in diluted magnetic semiconductorscitations

Places of action

Chart of shared publication
Funke, H.
1 / 5 shared
Trautmann, C.
1 / 32 shared
Krieg, J.
1 / 1 shared
Escoffier, Walter
1 / 3 shared
Toimil-Molares, M. E.
1 / 3 shared
Dufouleur, J.
1 / 1 shared
Faini, G.
1 / 3 shared
Lucot, D.
1 / 2 shared
Lemaître, A.
1 / 104 shared
Granada, M.
1 / 3 shared
Ulysse, C.
1 / 5 shared
Waintal, Xavier
1 / 9 shared
Chart of publication period
2018
2015

Co-Authors (by relevance)

  • Funke, H.
  • Trautmann, C.
  • Krieg, J.
  • Escoffier, Walter
  • Toimil-Molares, M. E.
  • Dufouleur, J.
  • Faini, G.
  • Lucot, D.
  • Lemaître, A.
  • Granada, M.
  • Ulysse, C.
  • Waintal, Xavier
OrganizationsLocationPeople

article

Direct probing of band-structure Berry phase in diluted magnetic semiconductors

  • Giraud, Romain
  • Faini, G.
  • Lucot, D.
  • Lemaître, A.
  • Granada, M.
  • Ulysse, C.
  • Waintal, Xavier
Abstract

We report on experimental evidence of the Berry phase accumulated by the charge-carrier wave function in single-domain nanowires made from a (Ga, Mn)(As, P) diluted ferromagnetic semiconductor layer. Its signature on the mesoscopic transport measurements is revealed as unusual patterns in the magnetoconductance that are clearly distinguished from the universal conductance fluctuations. We show that these patterns appear in a magnetic field region where the magnetization rotates coherently and are related to a change in the band-structure Berry phase as the magnetization direction changes. They should thus be considered a band-structure Berry phase fingerprint of the effective magnetic monopoles in the momentum space. We argue that this is an efficient method to vary the band structure in a controlled way and to probe it directly. Hence, (Ga, Mn) As appears to be a very interesting test bench for new concepts based on this geometrical phase.

Topics
  • impedance spectroscopy
  • phase
  • semiconductor
  • magnetization
  • band structure