Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kelly, Paul J.

  • Google
  • 3
  • 12
  • 137

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2015Direct method for calculating temperature-dependent transport properties65citations
  • 2015Direct method for calculating temperature-dependent transport properties65citations
  • 2013Crystalline CoFeB/graphite interfaces for carbon spintronics fabricated by solid phase epitaxy7citations

Places of action

Chart of shared publication
Liu, Yi
2 / 19 shared
Yuan, Zhe
2 / 4 shared
Wesselink, R. J. H.
2 / 2 shared
Starikov, Anton A.
3 / 3 shared
Van Schilfgaarde, Mark
1 / 24 shared
Sanderink, Johnny G. M.
1 / 3 shared
Siekman, Martin H.
1 / 1 shared
Van Geijn, Elmer
1 / 1 shared
Jong, Machiel P. De
1 / 1 shared
Wong, P. K. J.
1 / 5 shared
Tran, T. Lan Ahn
1 / 5 shared
Brocks, Geert H. L. A.
1 / 10 shared
Chart of publication period
2015
2013

Co-Authors (by relevance)

  • Liu, Yi
  • Yuan, Zhe
  • Wesselink, R. J. H.
  • Starikov, Anton A.
  • Van Schilfgaarde, Mark
  • Sanderink, Johnny G. M.
  • Siekman, Martin H.
  • Van Geijn, Elmer
  • Jong, Machiel P. De
  • Wong, P. K. J.
  • Tran, T. Lan Ahn
  • Brocks, Geert H. L. A.
OrganizationsLocationPeople

document

Direct method for calculating temperature-dependent transport properties

  • Liu, Yi
  • Kelly, Paul J.
  • Yuan, Zhe
  • Wesselink, R. J. H.
  • Starikov, Anton A.
Abstract

<p>We show how temperature-induced disorder can be combined in a direct way with first-principles scattering theory to study diffusive transport in real materials. Excellent (good) agreement with experiment is found for the resistivity of Cu, Pd, Pt (and Fe) when lattice (and spin) disorder are calculated from first principles. For Fe, the agreement with experiment is limited by how well the magnetization (of itinerant ferromagnets) can be calculated as a function of temperature. By introducing a simple Debye-like model of spin disorder parameterized to reproduce the experimental magnetization, the temperature dependence of the average resistivity, the anisotropic magnetoresistance, and the spin polarization of a Ni80Fe20 alloy are calculated and found to be in good agreement with existing data. Extension of the method to complex, inhomogeneous materials as well as to the calculation of other finite-temperature physical properties within the adiabatic approximation is straightforward.</p>

Topics
  • impedance spectroscopy
  • resistivity
  • theory
  • experiment
  • anisotropic
  • magnetization
  • spin polarization