People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Drummond, Neil David
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2017Nature of the metallization transition in solid hydrogencitations
- 2016Quasiparticle and excitonic gaps of one-dimensional carbon chainscitations
- 2015k · p theory for two-dimensional transition metal dichalcogenide semiconductorscitations
- 2014Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculationscitations
- 2014Electron-phonon coupling and the metallization of solid helium at terapascal pressurescitations
- 2014Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenidescitations
- 2004Coulomb finite-size effects in quasi-two-dimensional systemscitations
Places of action
Organizations | Location | People |
---|
article
Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations
Abstract
We use density functional theory to calculate the electronic band structures, cohesive energies, phonon dispersions, and optical absorption spectra of two-dimensional In2X2 crystals, where X is S, Se, or Te. We identify two crystalline phases (α and β) of monolayers of hexagonal In2X2, and show that they are characterized by different sets of Raman-active phonon modes. We find that these materials are indirect-band-gap semiconductors with a sombrero-shaped dispersion of holes near the valence-band edge. The latter feature results in a Lifshitz transition (a change in the Fermi-surface topology of hole-doped In2X2) at hole concentrations nS=6.86×1013 cm-2, nSe=6.20×1013 cm-2, and nTe=2.86×1013 cm-2 for X=S, Se, and Te, respectively, for α-In2X2 and nS=8.32×1013 cm-2, nSe=6.00×1013 cm-2, and nTe=8.14×1013 cm-2 for β-In2X2.