Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Díaz-Moreno, S.

  • Google
  • 2
  • 5
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Effect of titania doping and sintering temperature on titanium local environment and electrical conductivity of YSZ19citations
  • 2014Relationships between structural and electrical properties in mixed conductors duplex materials in the ZrO2-Y2O3-TiO2 ternary system10citations

Places of action

Chart of shared publication
Guglieri, C.
1 / 2 shared
Colomer, M. T.
2 / 3 shared
Chaboy, J.
2 / 7 shared
Boada, Roberto
2 / 13 shared
Maczka, M.
2 / 7 shared
Chart of publication period
2016
2014

Co-Authors (by relevance)

  • Guglieri, C.
  • Colomer, M. T.
  • Chaboy, J.
  • Boada, Roberto
  • Maczka, M.
OrganizationsLocationPeople

article

Relationships between structural and electrical properties in mixed conductors duplex materials in the ZrO2-Y2O3-TiO2 ternary system

  • Colomer, M. T.
  • Chaboy, J.
  • Boada, Roberto
  • Díaz-Moreno, S.
  • Maczka, M.
Abstract

<p>Duplex materials constituted by 0.50 mol titania-doped yttria-stabilized zirconia (YSZ) and 0.50 mol titania-doped yttria-tetragonal zirconia polycrystalline (YTZP) solid solutions in the ZrO2-Y2O3-TiO2 ternary system can be obtained using different processing strategies. In this study, different amounts of TiO2 dopant and different sintering times have been used for the preparation of the duplex materials: Doping YSZ with 10 mol% of TiO2 and sintering in air for 8 h (10Ti8h) and doping YSZ with 15 mol% of TiO2 and sintering in air for 2 h (15Ti2h) are both successful routes to obtain duplex materials. If we compare the field emission scanning electron microscopy-energy dispersive x-ray analyses of each cubic and each tetragonal solid solution of the two duplex materials, we conclude that the composition of each phase is different from each other, as was expected. The total ionic conductivity of both duplex samples is strongly reduced with respect to that of YSZ, and this reduction increases with the Ti content. In addition, the activation energy for ionic migration in 10Ti8h and 15Ti2h is lower than that for YSZ but higher than that for YTZP, as expected in terms of the relative amount of both YSZ and YTZP fractions in the materials. X-ray absorption spectroscopy (XAS) results, both x-ray absorption near-edge structure and extended x-ray absorption fine structure, show that Ti is sixfold coordinated in both the cubic and tetragonal phases of the duplex materials, departing from the eightfold coordination expected if a simple substitution at the Zr sites would take place. The XAS results also point out that the ability of Ti to trap oxygen vacancies in the cubic phase increases as Ti content does, in agreement with the electrical conductivity behavior, which cannot be accounted for in terms of a dilution effect.</p>

Topics
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • Oxygen
  • activation
  • electrical conductivity
  • x-ray absorption spectroscopy
  • sintering