People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Olsen, Thomas
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Type II multiferroic order in two-dimensional transition metal halides from first principles spin-spiral calculationscitations
- 2021Bulk heterogeneity in barium titanate above the Curie temperaturecitations
- 2016Defect-Tolerant Monolayer Transition Metal Dichalcogenidescitations
- 2016Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materialscitations
- 2013Beyond the random phase approximation:Improved description of short-range correlation by a renormalized adiabatic local density approximationcitations
- 2013Beyond the random phase approximationcitations
- 2012Computational screening of perovskite metal oxides for optimal solar light capturecitations
Places of action
Organizations | Location | People |
---|
article
Beyond the random phase approximation
Abstract
We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density functional theory and the adiabatic connection fluctuation-dissipation theorem and contains no fitted parameters. The new kernel is shown to preserve the accurate description of dispersive interactions from RPA while significantly improving the description of short-range correlation in molecules, insulators, and metals. For molecular atomization energies, the rALDA is a factor of 7 better than RPA and a factor of 4 better than the Perdew-Burke-Ernzerhof (PBE) functional when compared to experiments, and a factor of 3 (1.5) better than RPA (PBE) for cohesive energies of solids. For transition metals, the inclusion of full shell semicore states is found to be crucial for both RPA and rALDA calculations and can improve the cohesive energies by up to 0shell semicore states.4 eV. Finally, we discuss straightforward generalizations of the method, which might improve results even further.