People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eng, Lukas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Probing Ferroelectric Phase Transitions in Barium Titanate Single Crystals via in-situ Second Harmonic Generation Microscopy
- 2023Impact of Ferroelectric Layer Thickness on Reliability of Back-End-of-Line-Compatible Hafnium Zirconium Oxide Filmscitations
- 2023A Study on Imprint Behavior of Ferroelectric Hafnium Oxide Caused by High-Temperature Annealingcitations
- 2023Polarization Sensitivity in Scattering-Type Scanning Near-Field Optical Microscopy—Towards Nanoellipsometrycitations
- 2022Atomic layer deposition of yttrium iron garnet thin filmscitations
- 2022Effect of Al2O3 interlayers on the microstructure and electrical response of ferroelectric doped HfO2 thin filmscitations
- 2021Aging in Ferroelectric Si-Doped Hafnium Oxide Thin Filmscitations
- 2021Electric field-induced crystallization of ferroelectric hafnium zirconium oxidecitations
- 2021Tricyanidoferrates(−IV) and Ruthenates(−IV) with Non-Innocent Cyanido Ligandscitations
- 2021Influence of Annealing Temperature on the Structural and Electrical Properties of Si-Doped Ferroelectric Hafnium Oxidecitations
- 2021Impact of the SiO2interface layer on the crystallographic texture of ferroelectric hafnium oxidecitations
- 2020Structural and electrical comparison of si and zr doped hafnium oxide thin films and integrated fefets utilizing transmission kikuchi diffractioncitations
- 2016Multidomain Skyrmion Lattice State in Cu2OSeO3citations
- 2015Conductivity and magnetoresistance of La0.7Ce0.3MnO3-δ thin films under photoexcitationcitations
- 2015Optical antennae for near-field induced nonlinear photochemical reactions of photolabile azo-and amine groups
- 2014The Mn2+/Mn3+ state of La0.7Ce 0.3MnO3 by oxygen reduction and photodopingcitations
- 2014Near-field resonance shifts of ferroelectric barium titanate domains upon low-temperature phase transitioncitations
- 2013Strain-mediated elastic coupling in magnetoelectric nickel/barium-titanate heterostructurescitations
- 2010Web-like domain structure formation in barium titanate single crystalscitations
- 2010Poly(2-(dimethylamino)ethyl methacrylate) brushes with incorporated nanoparticles as a SERS active sensing layercitations
- 2010Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal depositioncitations
- 2009Probing polarization and dielectric function of molecules with higher order harmonics in scattering-near-field scanning optical microscopycitations
- 2009Ferroelectric Lithographycitations
- 2005Surface photovoltage spectroscopy for the investigation of perovskite oxide interfacescitations
- 2002Metal salt complexation of spin-coated ultrathin diazosulfonate terpolymer filmscitations
- 2002Novel diazosulfonate terpolymers for the preparation of structured functionalized surfaces
Places of action
Organizations | Location | People |
---|
article
Strain-mediated elastic coupling in magnetoelectric nickel/barium-titanate heterostructures
Abstract
<p>Multiferroic nanomaterials bear the potential for assembling a manifold of novel and smart devices. For room temperature (RT) applications, however, only the BiFeO<sub>3</sub> single-phase perovskites are potential candidates to date. Nevertheless, vertical heterostructures separating magnetic and ferroelectric functionality into different layers are now widely proposed to circumvent this lack in materials' availability. We show here that the second approach is very profitable as illustrated by the strain-mediated coupling between such two layers, i.e., a ferroelectric barium titanate single-crystal (BTO) and a magnetostrictive nickel (Ni) thin film. Applying an electric field across the BTO substrate forces the magnetic easy axis in the Ni film to rotate by 90 <sup>â̂̃</sup>, resulting in a magnetic anisotropy in the range of -1.2 to -33 kJ/m3. We show that local switching proceeds through the nucleation and growth of straight Néel-domain walls at a cost of zigzag walls. The process is fully reversible and continuously tunable as investigated with magnetooptical Kerr microscopy and magnetic force microscopy probing the local in-plane and out-of-plane magnetizations, respectively. Moreover, the degree of anisotropy can be pre-engineered by depositing the Ni film either at RT, above the Curie temperature T<sub>c</sub> of BTO, or at an intermediate temperature. Our findings give evidence for using the reported coupling in modern devices, such as magnetoresistive random access memories, spin valves, spin-polarized electron emission, but equally for the bottom-up assembling of magnetizable molecular nanostructures through magnetic domain wall engineering.</p>