People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tian, Wei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Copper oxide nanoparticles doped with lanthanum, magnesium and manganese: optical and structural characterizationcitations
- 2015Structural and magnetic phase transitions in CeCu<sub>6-x</sub>T<sub>x</sub> (T = Ag,Pd)citations
- 2012Magnetic properties of the S=1/2 square lattice antiferromagnet CuF2(H2O)2(pyz)citations
Places of action
Organizations | Location | People |
---|
article
Magnetic properties of the S=1/2 square lattice antiferromagnet CuF2(H2O)2(pyz)
Abstract
We have performed elastic and inelastic neutron scattering experiments on single crystal samples of the coordination polymer compound CuF{sub 2}(H{sub 2}O){sub 2}(pyz) (pyz = pyrazine) to study the magnetic structure and excitations. The elastic neutron diffraction measurements indicate a collinear antiferromagnetic structure with moments oriented along the [0.7 0 1] real-space direction and an ordered moment of 0.60 {+-} 0.03 {micro}B/Cu. This value is significantly smaller than the single-ion magnetic moment, reflecting the presence of strong quantum fluctuations. The spin wave dispersion from magnetic zone center to the zone boundary points (0.5 1.5 0) and (0.5 0 1.5) can be described by a two-dimensional Heisenberg model with a nearest-neighbor magnetic exchange constant J{sub 2D} = 0.934 {+-} 0.0025 meV. The interlayer interaction J{sub perp} in this compound is less than 1.5% of J{sub 2D}. The spin excitation energy at the (0.5 0.5 0.5) zone boundary point is reduced when compared to the (0.5 1 0.5) zone boundary point by {approx}10.3% {+-} 1.4%. This zone boundary dispersion is consistent with quantum Monte Carlo and series expansion calculations for the S=1/2 Heisenberg square lattice antiferromagnet, which include corrections for quantum fluctuations to linear spin wave theory.