People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yang, Guang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Mechanical Milling – Induced Microstructure Changes in Argyrodite LPSCl Solid‐State Electrolyte Critically Affect Electrochemical Stabilitycitations
- 2024CEERS: 7.7 μm PAH Star Formation Rate Calibration with JWST MIRIcitations
- 2023Tuned Reactivity at the Lithium Metal–Argyrodite Solid State Electrolyte Interphasecitations
- 2023Adverse Effects of Trace Non-polar Binder on Ion Transport in Free-standing Sulfide Solid Electrolyte Separatorscitations
- 2023CEERS: 7.7 {mu}m PAH Star Formation Rate Calibration with JWST MIRI
- 2023CEERS: 7.7 ${mu}$m PAH Star Formation Rate Calibration with JWST MIRI
- 2022Benchmarking Solid-State Batteries Containing Sulfide Separators: Effects of Electrode Composition and Stack Pressurecitations
- 2015Effect of physical aging on fracture behavior of Te 2 As 3 Se 5 glass fiberscitations
- 2013Physical properties of the GexSe1 − x glasses in the 0 < x < 0.42 range in correlation with their structurecitations
- 2013Effect of Physical Aging Conditions on the Mechanical Properties of Te2As3Se5 (TAS) Glass Fiberscitations
- 2012Fragile-strong behavior in the AsxSe1-x glass forming system in relation to structural dimensionalitycitations
- 2011Low-Voltage p- and n-Type Organic Self-Assembled Monolayer Field Effect Transistorscitations
- 2010Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x systemcitations
Places of action
Organizations | Location | People |
---|
article
Fragile-strong behavior in the AsxSe1-x glass forming system in relation to structural dimensionality
Abstract
International audience ; A series of physical properties have been measured throughout and above the glass transition for the whole AsxSe1-x system, including the activation for viscous flow E-eta, the activation energy for enthalpy relaxation EH, and the activation energy for structural relaxation E-a obtained by specific heat spectroscopy. All properties show a double minimum at an average coordination number < r > = 2.3 and < r > = 2.5 with a local maximum at < r > = 2.4. This is in stark contrast to the physical properties previously measured on the same samples at room temperature and which instead show a single minimum centered at < r > = 2.4. The observed trend is consistent with the dimensionality of the network derived from structural data obtained by nuclear magnetic resonance. An analysis of the complex heat capacity also reveals a bimodal relaxation process in As-rich glasses, which explains why they are kinetically fragile but appear thermodynamically strong. Finally, these results demonstrate that previous observations of an ''intermediate phase'' in AsxSe1-x glasses near < r > = 2.3 is associated with the high temperature behavior of the glassy network and should be interpreted in terms of the temperature dependence of structural constraints rather than the number of constraints in the room-temperature glass.