People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gueguen, Yann
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Effect of calcium and potassium oxide addition on the viscosity and fragility of a calcium aluminosilicate meltcitations
- 2021Non-equilibrium viscoelastic behavior of chalcogenide glass fibers
- 2020Mechanics and physics of a glass/particles photonic spongecitations
- 2020Viscoelastic analysis of RFDA measurements applied to oxide glassescitations
- 2020Viscoelastic analysis of RFDA measurements applied to oxide glassescitations
- 2020Deformation of a chalcogenide glass film under optical modulated excitationcitations
- 2018Fracture toughness, fracture energy and slow crack growth of glass as investigated by the Single-Edge Precracked Beam (SEPB) and Chevron-Notched Beam (CNB) methodscitations
- 2018Fracture toughness, fracture energy and slow crack growth of glass as investigated by the Single-Edge Precracked Beam (SEPB) and Chevron-Notched Beam (CNB) methodscitations
- 2017Rheology of chalcogenide glasses under light irradiation
- 2017Molecular design of melt-spinnable co-polymers as Si–B–C–N fiber precursorscitations
- 2017Mechanical model of giant photoexpansion in a chalcogenide glass and the role of photofluiditycitations
- 2017Co-sputtered amorphous Ge-Sb-Se thin films: Optical properties and structurecitations
- 2016Elasticity and viscosity of BaO-TiO2-SiO2 glasses in the 0.9 to 1.2T(g) temperature intervalcitations
- 2015A relationship between non-exponential stress relaxation and delayed elasticity in the viscoelastic process in amorphous solids: Illustration on a chalcogenide glasscitations
- 2015A relationship between non-exponential stress relaxation and delayed elasticity in the viscoelastic process in amorphous solids: Illustration on a chalcogenide glasscitations
- 2013Physical properties of the GexSe1 − x glasses in the 0 < x < 0.42 range in correlation with their structurecitations
- 2012Photoinduced Fluidity and Viscoelasticity in Chalcogenide Glassescitations
- 2012Fragile-strong behavior in the AsxSe1-x glass forming system in relation to structural dimensionalitycitations
- 2012Investigation of the Mechanisms Involved in the Sintering of Chalcogenide Glasses and the Preparation of Glass-Ceramics by Spark Plasma Sinteringcitations
- 2011Assessment of rheological and thermodynamic properties of the Pd40Ni40P20 bulk metallic glass around glass transition using an indentation creep techniquecitations
- 2010Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x systemcitations
- 2010Optical microfabrication of tapers in low-loss chalcogenide fiberscitations
- 2010Photoinduced fluidity in chalcogenide glasses at low and high intensities: A model accounting for photon efficiencycitations
- 2009Correlation Between Thermal and Mechanical Relaxation in Chalcogenide Glass Fiberscitations
- 2009Influence of ageing conditions on the mechanical properties of Te-As-Se fibrescitations
- 2008Sub-Tg viscoelastic behaviour of chalcogenide glasses, anomalous viscous flow and stress relaxationcitations
- 2008Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transitioncitations
- 2008Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transitioncitations
Places of action
Organizations | Location | People |
---|
article
Fragile-strong behavior in the AsxSe1-x glass forming system in relation to structural dimensionality
Abstract
International audience ; A series of physical properties have been measured throughout and above the glass transition for the whole AsxSe1-x system, including the activation for viscous flow E-eta, the activation energy for enthalpy relaxation EH, and the activation energy for structural relaxation E-a obtained by specific heat spectroscopy. All properties show a double minimum at an average coordination number < r > = 2.3 and < r > = 2.5 with a local maximum at < r > = 2.4. This is in stark contrast to the physical properties previously measured on the same samples at room temperature and which instead show a single minimum centered at < r > = 2.4. The observed trend is consistent with the dimensionality of the network derived from structural data obtained by nuclear magnetic resonance. An analysis of the complex heat capacity also reveals a bimodal relaxation process in As-rich glasses, which explains why they are kinetically fragile but appear thermodynamically strong. Finally, these results demonstrate that previous observations of an ''intermediate phase'' in AsxSe1-x glasses near < r > = 2.3 is associated with the high temperature behavior of the glassy network and should be interpreted in terms of the temperature dependence of structural constraints rather than the number of constraints in the room-temperature glass.